The Art of the Infinite: The Pleasures of Mathematics


Robert M. Kaplan - 1980
    The Times called it elegant, discursive, and littered with quotes and allusions from Aquinas via Gershwin to Woolf and The Philadelphia Inquirer praised it as absolutely scintillating. In this delightful new book, Robert Kaplan, writing together with his wife Ellen Kaplan, once again takes us on a witty, literate, and accessible tour of the world of mathematics. Where The Nothing That Is looked at math through the lens of zero, The Art of the Infinite takes infinity, in its countless guises, as a touchstone for understanding mathematical thinking. Tracing a path from Pythagoras, whose great Theorem led inexorably to a discovery that his followers tried in vain to keep secret (the existence of irrational numbers); through Descartes and Leibniz; to the brilliant, haunted Georg Cantor, who proved that infinity can come in different sizes, the Kaplans show how the attempt to grasp the ungraspable embodies the essence of mathematics. The Kaplans guide us through the Republic of Numbers, where we meet both its upstanding citizens and more shadowy dwellers; and we travel across the plane of geometry into the unlikely realm where parallel lines meet. Along the way, deft character studies of great mathematicians (and equally colorful lesser ones) illustrate the opposed yet intertwined modes of mathematical thinking: the intutionist notion that we discover mathematical truth as it exists, and the formalist belief that math is true because we invent consistent rules for it. Less than All, wrote William Blake, cannot satisfy Man. The Art of the Infinite shows us some of the ways that Man has grappled with All, and reveals mathematics as one of the most exhilarating expressions of the human imagination.

Biggest Secrets


William Poundstone - 1993
    Fields Cookies... What backward messages on records are really trying to tell you... Frank Sinatra's real age... Why you can't counterfeit a lottery ticket... Barbra Streisand's blue movie... The other Boy Scout rituals... Ingmar Bergman's soap commercials... The formula for Play-Doh... and more.

Engineering Electromagnetics


William H. Hayt Jr. - 1950
    This edition retains the scope and emphasis that have made the book very successful while adding over twenty new numerical examples and over 550 new end-of-chapter problems.

The Mathematical Theory of Communication


Claude Shannon - 1949
    Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.

The Mathematical Universe: An Alphabetical Journey Through the Great Proofs, Problems, and Personalities


William Dunham - 1994
    . .he believes these ideas to be accessible to the audience he wantsto reach, and he writes so that they are. -- NatureIf you want to encourage anyone's interest in math, get them TheMathematical Universe. * New Scientist

Elements Of Discrete Mathematics: Solutions Manual


Chung Laung Liu - 1999
    

Painless Algebra


Lynette Long - 1998
    The author defines all terms, points out potential pitfalls in algebraic calculation, and makes problem solving a fun activity. New in this edition are painless approaches to understanding and graphing linear equations, solving systems of linear inequalities, and graphing quadratic equations. Barron’s popular Painless Series of study guides for middle school and high school students offer a lighthearted, often humorous approach to their subjects, transforming details that might once have seemed boring or difficult into a series of interesting and mentally challenging ideas. Most titles in the series feature many fun-to-solve “Brain Tickler” problems with answers at the end of each chapter.

Lewis Carroll in Numberland: His Fantastical Mathematical Logical Life


Robin J. Wilson - 2008
    Fascinated by the inner life of Charles Lutwidge Dodson, Robin Wilson, a Carroll scholar and a noted mathematics professor, has produced this revelatory book—filled with more than one hundred striking and often playful illustrations—that examines the many inspirations and sources for Carroll's fantastical writings, mathematical and otherwise. As Wilson demonstrates, Carroll—who published serious, if occasionally eccentric, works in the fields of geometry, logic, and algebra—made significant contributions to subjects as varied as voting patterns and the design of tennis tournaments, in the process creating imaginative recreational puzzles based on mathematical ideas. In the tradition of Sylvia Nasar's A Beautiful Mind and Andrew Hodges's Alan Turing, this is an engaging look at the incredible genius of one of mathematics' and literature's most enigmatic minds.

How to Change Your Mind: What the New Science of Psychedelics


Zhivko - 2018
    

A First Course in Probability


Sheldon M. Ross - 1976
    A software diskette provides an easy-to-use tool for students to derive probabilities for binomial.

Flatland: A Romance of Many Dimensions


Edwin A. Abbott - 1884
    The work of English clergyman, educator and Shakespearean scholar Edwin A. Abbott (1838-1926), it describes the journeys of A. Square [sic – ed.], a mathematician and resident of the two-dimensional Flatland, where women-thin, straight lines-are the lowliest of shapes, and where men may have any number of sides, depending on their social status.Through strange occurrences that bring him into contact with a host of geometric forms, Square has adventures in Spaceland (three dimensions), Lineland (one dimension) and Pointland (no dimensions) and ultimately entertains thoughts of visiting a land of four dimensions—a revolutionary idea for which he is returned to his two-dimensional world. Charmingly illustrated by the author, Flatland is not only fascinating reading, it is still a first-rate fictional introduction to the concept of the multiple dimensions of space. "Instructive, entertaining, and stimulating to the imagination." — Mathematics Teacher.

Godel: A Life Of Logic, The Mind, And Mathematics


John L. Casti - 2000
    His Incompleteness Theorem turned not only mathematics but also the whole world of science and philosophy on its head. Equally legendary were Gö's eccentricities, his close friendship with Albert Einstein, and his paranoid fear of germs that eventually led to his death from self-starvation. Now, in the first popular biography of this strange and brilliant thinker, John Casti and Werner DePauli bring the legend to life. After describing his childhood in the Moravian capital of Brno, the authors trace the arc of Gö's remarkable career, from the famed Vienna Circle, where philosophers and scientists debated notions of truth, to the Institute for Advanced Study in Princeton, New Jersey, where he lived and worked until his death in 1978. In the process, they shed light on Gö's contributions to mathematics, philosophy, computer science, artificial intelligence -- even cosmology -- in an entertaining and accessible way.

Numbers: A Very Short Introduction


Peter M. Higgins - 2010
    In this Very Short Introduction, Peter M. Higgins, a renowned popular-science writer, unravels the world of numbers, demonstrating its richness and providing an overview of all the number types that feature in modern science and mathematics. Indeed, Higgins paints a crystal-clear picture of the number world, showing how the modern number system matured over many centuries, and introducing key concepts such as integers, fractions, real and imaginary numbers, and complex numbers. Higgins sheds light on such fascinating topics as the series of primes, describing how primes are now used to encrypt confidential data on the internet. He also explores the infinite nature of number collections and explains how the so-called real numbers knit together to form the continuum of the number line. Written in the fashion of Higgins' highly popular science paperbacks, Numbers accurately explains the nature of numbers and how so-called complex numbers and number systems are used in calculations that arise in real problems.

Fifty Challenging Problems in Probability with Solutions


Frederick Mosteller - 1965
    Selected for originality, general interest, or because they demonstrate valuable techniques, the problems are ideal as a supplement to courses in probability or statistics, or as stimulating recreation for the mathematically minded. Detailed solutions. Illustrated.

Mathematics With Applications in Management and Economics/Solutions Manual


Earl K. Bowen - 1987