Book picks similar to
Computer Architecture and Organization by John P. Hayes
computer-architecture
coa
technical
1
CSS: The Definitive Guide
Eric A. Meyer - 2000
Updated to cover Internet Explorer 7, Microsoft's vastly improved browser, this new edition includes content on positioning, lists and generated content, table layout, user interface, paged media, and more.Simply put, Cascading Style Sheets (CSS) is a way to separate a document's structure from its presentation. The benefits of this can be quite profound: CSS allows a much richer document appearance than HTML and also saves time -- you can create or change the appearance of an entire document in just one place; and its compact file size makes web pages load quickly.CSS: The Definitive Guide, 3rd Edition, provides you with a comprehensive guide to CSS implementation, along with a thorough review of all aspects of CSS 2.1. Updated to cover Internet Explorer 7, Microsoft's vastly improved browser, this new edition includes content on positioning, lists and generated content, table layout, user interface, paged media, and more. Author Eric Meyer tackles the subject with passion, exploring in detail each individual CSS property and how it interacts with other properties. You'll not only learn how to avoid common mistakes in interpretation, you also will benefit from the depth and breadth of his experience and his clear and honest style. This is the complete sourcebook on CSS.The 3rd edition contains:Updates to reflect changes in the latest draft version of CSS 2.1Browser notes updated to reflect changes between IE6 and IE7Advanced selectors supported in IE7 and other major browsers includedA new round of technical edits by a fresh set of editorsClarifications and corrected errata, including updated URLs ofreferenced online resources
Java Generics and Collections: Speed Up the Java Development Process
Maurice Naftalin - 2006
Generics and the greatly expanded collection libraries have tremendously increased the power of Java 5 and Java 6. But they have also confused many developers who haven't known how to take advantage of these new features.Java Generics and Collections covers everything from the most basic uses of generics to the strangest corner cases. It teaches you everything you need to know about the collections libraries, so you'll always know which collection is appropriate for any given task, and how to use it.Topics covered include:• Fundamentals of generics: type parameters and generic methods• Other new features: boxing and unboxing, foreach loops, varargs• Subtyping and wildcards• Evolution not revolution: generic libraries with legacy clients and generic clients with legacy libraries• Generics and reflection• Design patterns for generics• Sets, Queues, Lists, Maps, and their implementations• Concurrent programming and thread safety with collections• Performance implications of different collectionsGenerics and the new collection libraries they inspired take Java to a new level. If you want to take your software development practice to a new level, this book is essential reading.Philip Wadler is Professor of Theoretical Computer Science at the University of Edinburgh, where his research focuses on the design of programming languages. He is a co-designer of GJ, work that became the basis for generics in Sun's Java 5.0.Maurice Naftalin is Technical Director at Morningside Light Ltd., a software consultancy in the United Kingdom. He has most recently served as an architect and mentor at NSB Retail Systems plc, and as the leader of the client development team of a major UK government social service system."A brilliant exposition of generics. By far the best book on the topic, it provides a crystal clear tutorial that starts with the basics and ends leaving the reader with a deep understanding of both the use and design of generics." Gilad Bracha, Java Generics Lead, Sun Microsystems
Introduction to Networking: How the Internet Works
Charles Severance - 2015
While very complex, the Internet operates on a few relatively simple concepts that anyone can understand. Networks and networked applications are embedded in our lives. Understanding how these technologies work is invaluable. This book was written for everyone - no technical knowledge is required!While this book is not specifically about the Network+ or CCNA certifications, it as a way to give students interested in these certifications a starting point.
Learn You a Haskell for Great Good!
Miran Lipovača - 2011
Learn You a Haskell for Great Good! introduces programmers familiar with imperative languages (such as C++, Java, or Python) to the unique aspects of functional programming. Packed with jokes, pop culture references, and the author's own hilarious artwork, Learn You a Haskell for Great Good! eases the learning curve of this complex language, and is a perfect starting point for any programmer looking to expand his or her horizons. The well-known web tutorial on which this book is based is widely regarded as the best way for beginners to learn Haskell, and receives over 30,000 unique visitors monthly.
The Node Beginner Book
Manuel Kiessling - 2011
The aim of The Node Beginner Book is to get you started with developing applications for Node.js, teaching you everything you need to know about advanced JavaScript along the way on 59 pages.
Pro Git
Scott Chacon - 2009
It took the open source world by storm since its inception in 2005, and is used by small development shops and giants like Google, Red Hat, and IBM, and of course many open source projects.A book by Git experts to turn you into a Git expert. Introduces the world of distributed version control Shows how to build a Git development workflow.
Data Science from Scratch: First Principles with Python
Joel Grus - 2015
In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.
If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.
Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
You Don't Know JS Yet: Get Started
Kyle Simpson - 2020
But with a million blogs, books, and videos out there, just where do you start? The worldwide best selling "You Don't Know JS" book series is back for a 2nd edition: "You Don't Know JS Yet". All 6 books are brand new, rewritten to cover all sides of JS for 2020 and beyond. "Get Started" prepares you for the journey ahead, first surveying the language then detailing how the rest of the You Don't Know JS Yet book series guides you to knowing JS more deeply.
Data Science at the Command Line: Facing the Future with Time-Tested Tools
Jeroen Janssens - 2014
You'll learn how to combine small, yet powerful, command-line tools to quickly obtain, scrub, explore, and model your data.To get you started--whether you're on Windows, OS X, or Linux--author Jeroen Janssens introduces the Data Science Toolbox, an easy-to-install virtual environment packed with over 80 command-line tools.Discover why the command line is an agile, scalable, and extensible technology. Even if you're already comfortable processing data with, say, Python or R, you'll greatly improve your data science workflow by also leveraging the power of the command line.Obtain data from websites, APIs, databases, and spreadsheetsPerform scrub operations on plain text, CSV, HTML/XML, and JSONExplore data, compute descriptive statistics, and create visualizationsManage your data science workflow using DrakeCreate reusable tools from one-liners and existing Python or R codeParallelize and distribute data-intensive pipelines using GNU ParallelModel data with dimensionality reduction, clustering, regression, and classification algorithms
The Best Software Writing I: Selected and Introduced by Joel Spolsky
Joel Spolsky - 2005
Frustrated by the lack of well-written essays on software engineering, Joel Spolsky (of www.joelonsoftware.com fame) has put together a collection of his favorite writings on the topic.With a nod to both the serious and funny sides of technical writing, The Best Software Writing I: Selected and Introduced by Joel Spolsky is an entertaining read and a guide to the technical writing literati.The Best Software Writing I contains writings from:Ken Arnold Leon Bambrick Michael Bean Rory Blyth Adam Bosworth danah boyd Raymond Chen Kevin Cheng and Tom Chi Cory Doctorow ea_spouse Bruce Eckel Paul Ford Paul Graham John Gruber Gregor Hohpe Ron Jeffries Eric Johnson Eric Lippert Michael Lopp Larry Osterman Mary Poppendieck Rick Schaut Aaron Swartz Clay Shirky Eric Sink why the lucky stiff
Python Tricks: A Buffet of Awesome Python Features
Dan Bader - 2017
Discover the “hidden gold” in Python’s standard library and start writing clean and Pythonic code today.
Who Should Read This Book:
If you’re wondering which lesser known parts in Python you should know about, you’ll get a roadmap with this book. Discover cool (yet practical!) Python tricks and blow your coworkers’ minds in your next code review.
If you’ve got experience with legacy versions of Python, the book will get you up to speed with modern patterns and features introduced in Python 3 and backported to Python 2.
If you’ve worked with other programming languages and you want to get up to speed with Python, you’ll pick up the idioms and practical tips you need to become a confident and effective Pythonista.
If you want to make Python your own and learn how to write clean and Pythonic code, you’ll discover best practices and little-known tricks to round out your knowledge.
What Python Developers Say About The Book:
"I kept thinking that I wished I had access to a book like this when I started learning Python many years ago." — Mariatta Wijaya, Python Core Developer"This book makes you write better Python code!" — Bob Belderbos, Software Developer at Oracle"Far from being just a shallow collection of snippets, this book will leave the attentive reader with a deeper understanding of the inner workings of Python as well as an appreciation for its beauty." — Ben Felder, Pythonista"It's like having a seasoned tutor explaining, well, tricks!" — Daniel Meyer, Sr. Desktop Administrator at Tesla Inc.
Programming in Lua
Roberto Ierusalimschy - 2001
Currently, Lua is being used in areas ranging from embedded systems to Web development and is widely spread in the game industry, where knowledge of Lua is an indisputable asset. "Programming in Lua" is the official book about the language, giving a solid base for any programmer who wants to use Lua. Authored by Roberto Ierusalimschy, the chief architect of the language, it covers all aspects of Lua 5---from the basics to its API with C---explaining how to make good use of its features and giving numerous code examples. "Programming in Lua" is targeted at people with some programming background, but does not assume any prior knowledge about Lua or other scripting languages. This Second Edition updates the text to Lua 5.1 and brings substantial new material, including numerous new examples, a detailed explanation of the new module system, and two new chapters centered on multiple states and garbage collection.
Concrete Mathematics: A Foundation for Computer Science
Ronald L. Graham - 1988
"More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems."
Professor Frisby's Mostly Adequate Guide to Functional Programming
Brian Lonsdorf
We'll use the world's most popular functional programming language: JavaScript. Some may feel this is a poor choice as it's against the grain of the current culture which, at the moment, feels predominately imperative. However, I believe it is the best way to learn FP for several reasons:You likely use it every day at work.This makes it possible to practice and apply your acquired knowledge each day on real world programs rather than pet projects on nights and weekends in an esoteric FP language.We don't have to learn everything up front to start writing programs.In a pure functional language, you cannot log a variable or read a DOM node without using monads. Here we can cheat a little as we learn to purify our codebase. It's also easier to get started in this language since it's mixed paradigm and you can fall back on your current practices while there are gaps in your knowledge.The language is fully capable of writing top notch functional code.We have all the features we need to mimic a language like Scala or Haskell with the help of a tiny library or two. Object-oriented programming currently dominates the industry, but it's clearly awkward in JavaScript. It's akin to camping off of a highway or tap dancing in galoshes. We have to bind all over the place lest this change out from under us, we don't have classes[^Yet], we have various work arounds for the quirky behavior when the new keyword is forgotten, private members are only available via closures. To a lot of us, FP feels more natural anyways.That said, typed functional languages will, without a doubt, be the best place to code in the style presented by this book. JavaScript will be our means of learning a paradigm, where you apply it is up to you. Luckily, the interfaces are mathematical and, as such, ubiquitous. You'll find yourself at home with swiftz, scalaz, haskell, purescript, and other mathematically inclined environments.
The Art of Multiprocessor Programming
Maurice Herlihy - 2008
To leverage the performance and power of multiprocessor programming, also known as multicore programming, programmers need to learn the new principles, algorithms, and tools.The book will be of immediate use to programmers working with the new architectures. For example, the next generation of computer game consoles will all be multiprocessor-based, and the game industry is currently struggling to understand how to address the programming challenges presented by these machines. This change in the industry is so fundamental that it is certain to require a significant response by universities, and courses on multicore programming will become a staple of computer science curriculums.This book includes fully-developed Java examples detailing data structures, synchronization techniques, transactional memory, and more.Students in multiprocessor and multicore programming courses and engineers working with multiprocessor and multicore systems will find this book quite useful.