Book picks similar to
Algorithms by Panos Louridas


computer-science
non-fiction
information-science
technology

Machine Learning in Action


Peter Harrington - 2011
    "Machine learning," the process of automating tasks once considered the domain of highly-trained analysts and mathematicians, is the key to efficiently extracting useful information from this sea of raw data. Machine Learning in Action is a unique book that blends the foundational theories of machine learning with the practical realities of building tools for everyday data analysis. In it, the author uses the flexible Python programming language to show how to build programs that implement algorithms for data classification, forecasting, recommendations, and higher-level features like summarization and simplification.

Hacking: The Art of Exploitation


Jon Erickson - 2003
    This book explains the technical aspects of hacking, including stack based overflows, heap based overflows, string exploits, return-into-libc, shellcode, and cryptographic attacks on 802.11b.

Machine Learning Yearning


Andrew Ng
    But building a machine learning system requires that you make practical decisions: Should you collect more training data? Should you use end-to-end deep learning? How do you deal with your training set not matching your test set? and many more. Historically, the only way to learn how to make these "strategy" decisions has been a multi-year apprenticeship in a graduate program or company. This is a book to help you quickly gain this skill, so that you can become better at building AI systems.

Cracking the Coding Interview: 150 Programming Questions and Solutions


Gayle Laakmann McDowell - 2008
    This is a deeply technical book and focuses on the software engineering skills to ace your interview. The book is over 500 pages and includes 150 programming interview questions and answers, as well as other advice.The full list of topics are as follows:The Interview ProcessThis section offers an overview on questions are selected and how you will be evaluated. What happens when you get a question wrong? When should you start preparing, and how? What language should you use? All these questions and more are answered.Behind the ScenesLearn what happens behind the scenes during your interview, how decisions really get made, who you interview with, and what they ask you. Companies covered include Google, Amazon, Yahoo, Microsoft, Apple and Facebook.Special SituationsThis section explains the process for experience candidates, Program Managers, Dev Managers, Testers / SDETs, and more. Learn what your interviewers are looking for and how much code you need to know.Before the InterviewIn order to ace the interview, you first need to get an interview. This section describes what a software engineer's resume should look like and what you should be doing well before your interview.Behavioral PreparationAlthough most of a software engineering interview will be technical, behavioral questions matter too. This section covers how to prepare for behavioral questions and how to give strong, structured responses.Technical Questions (+ 5 Algorithm Approaches)This section covers how to prepare for technical questions (without wasting your time) and teaches actionable ways to solve the trickiest algorithm problems. It also teaches you what exactly "good coding" is when it comes to an interview.150 Programming Questions and AnswersThis section forms the bulk of the book. Each section opens with a discussion of the core knowledge and strategies to tackle this type of question, diving into exactly how you break down and solve it. Topics covered include• Arrays and Strings• Linked Lists• Stacks and Queues• Trees and Graphs• Bit Manipulation• Brain Teasers• Mathematics and Probability• Object-Oriented Design• Recursion and Dynamic Programming• Sorting and Searching• Scalability and Memory Limits• Testing• C and C++• Java• Databases• Threads and LocksFor the widest degree of readability, the solutions are almost entirely written with Java (with the exception of C / C++ questions). A link is provided with the book so that you can download, compile, and play with the solutions yourself.Changes from the Fourth Edition: The fifth edition includes over 200 pages of new content, bringing the book from 300 pages to over 500 pages. Major revisions were done to almost every solution, including a number of alternate solutions added. The introductory chapters were massively expanded, as were the opening of each of the chapters under Technical Questions. In addition, 24 new questions were added.Cracking the Coding Interview, Fifth Edition is the most expansive, detailed guide on how to ace your software development / programming interviews.

Problem Solving with Algorithms and Data Structures Using Python


Bradley N. Miller - 2005
    It is also about Python. However, there is much more. The study of algorithms and data structures is central to understanding what computer science is all about. Learning computer science is not unlike learning any other type of difficult subject matter. The only way to be successful is through deliberate and incremental exposure to the fundamental ideas. A beginning computer scientist needs practice so that there is a thorough understanding before continuing on to the more complex parts of the curriculum. In addition, a beginner needs to be given the opportunity to be successful and gain confidence. This textbook is designed to serve as a text for a first course on data structures and algorithms, typically taught as the second course in the computer science curriculum. Even though the second course is considered more advanced than the first course, this book assumes you are beginners at this level. You may still be struggling with some of the basic ideas and skills from a first computer science course and yet be ready to further explore the discipline and continue to practice problem solving. We cover abstract data types and data structures, writing algorithms, and solving problems. We look at a number of data structures and solve classic problems that arise. The tools and techniques that you learn here will be applied over and over as you continue your study of computer science.

Turing's Cathedral: The Origins of the Digital Universe


George Dyson - 2012
    In Turing’s Cathedral, George Dyson focuses on a small group of men and women, led by John von Neumann at the Institute for Advanced Study in Princeton, New Jersey, who built one of the first computers to realize Alan Turing’s vision of a Universal Machine. Their work would break the distinction between numbers that mean things and numbers that do things—and our universe would never be the same. Using five kilobytes of memory (the amount allocated to displaying the cursor on a computer desktop of today), they achieved unprecedented success in both weather prediction and nuclear weapons design, while tackling, in their spare time, problems ranging from the evolution of viruses to the evolution of stars. Dyson’s account, both historic and prophetic, sheds important new light on how the digital universe exploded in the aftermath of World War II. The proliferation of both codes and machines was paralleled by two historic developments: the decoding of self-replicating sequences in biology and the invention of the hydrogen bomb. It’s no coincidence that the most destructive and the most constructive of human inventions appeared at exactly the same time.  How did code take over the world? In retracing how Alan Turing’s one-dimensional model became John von Neumann’s two-dimensional implementation, Turing’s Cathedral offers a series of provocative suggestions as to where the digital universe, now fully three-dimensional, may be heading next.

Pro Git


Scott Chacon - 2009
    It took the open source world by storm since its inception in 2005, and is used by small development shops and giants like Google, Red Hat, and IBM, and of course many open source projects.A book by Git experts to turn you into a Git expert. Introduces the world of distributed version control Shows how to build a Git development workflow.

Clean Architecture


Robert C. Martin - 2017
    "Uncle Bob" Martin shows how to bring greater professionalism and discipline to application architecture and design.As with his other books, Martin's Clean Architecture doesn't merely present multiple choices and options, and say "use your best judgment": it tells you what choices to make, and why those choices are critical to your success. Martin offers direct, no-nonsense answers to key architecture and design questions like:What are the best high level structures for different kinds of applications, including web, database, thick-client, console, and embedded apps?What are the core principles of software architecture?What is the role of the architect, and what is he/she really trying to achieve?What are the core principles of software design?How do designs and architectures go wrong, and what can you do about it?What are the disciplines and practices of professional architects and designers?Clean Architecture is essential reading for every software architect, systems analyst, system designer, and software manager — and for any programmer who aspires to these roles or is impacted by their work.

Python Tricks: A Buffet of Awesome Python Features


Dan Bader - 2017
    Discover the “hidden gold” in Python’s standard library and start writing clean and Pythonic code today. Who Should Read This Book: If you’re wondering which lesser known parts in Python you should know about, you’ll get a roadmap with this book. Discover cool (yet practical!) Python tricks and blow your coworkers’ minds in your next code review. If you’ve got experience with legacy versions of Python, the book will get you up to speed with modern patterns and features introduced in Python 3 and backported to Python 2. If you’ve worked with other programming languages and you want to get up to speed with Python, you’ll pick up the idioms and practical tips you need to become a confident and effective Pythonista. If you want to make Python your own and learn how to write clean and Pythonic code, you’ll discover best practices and little-known tricks to round out your knowledge. What Python Developers Say About The Book: "I kept thinking that I wished I had access to a book like this when I started learning Python many years ago." — Mariatta Wijaya, Python Core Developer"This book makes you write better Python code!" — Bob Belderbos, Software Developer at Oracle"Far from being just a shallow collection of snippets, this book will leave the attentive reader with a deeper understanding of the inner workings of Python as well as an appreciation for its beauty." — Ben Felder, Pythonista"It's like having a seasoned tutor explaining, well, tricks!" — Daniel Meyer, Sr. Desktop Administrator at Tesla Inc.

How to Solve It: A New Aspect of Mathematical Method


George Pólya - 1944
    Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.

The Art of R Programming: A Tour of Statistical Software Design


Norman Matloff - 2011
    No statistical knowledge is required, and your programming skills can range from hobbyist to pro.Along the way, you'll learn about functional and object-oriented programming, running mathematical simulations, and rearranging complex data into simpler, more useful formats. You'll also learn to: Create artful graphs to visualize complex data sets and functions Write more efficient code using parallel R and vectorization Interface R with C/C++ and Python for increased speed or functionality Find new R packages for text analysis, image manipulation, and more Squash annoying bugs with advanced debugging techniques Whether you're designing aircraft, forecasting the weather, or you just need to tame your data, The Art of R Programming is your guide to harnessing the power of statistical computing.

Data Smart: Using Data Science to Transform Information into Insight


John W. Foreman - 2013
    Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions.But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope.Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data.Each chapter will cover a different technique in a spreadsheet so you can follow along: - Mathematical optimization, including non-linear programming and genetic algorithms- Clustering via k-means, spherical k-means, and graph modularity- Data mining in graphs, such as outlier detection- Supervised AI through logistic regression, ensemble models, and bag-of-words models- Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation- Moving from spreadsheets into the R programming languageYou get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.

Numerical Recipes in C: The Art of Scientific Computing


William H. Press - 1988
    In a self-contained manner it proceeds from mathematical and theoretical considerations to actual practical computer routines. With over 100 new routines bringing the total to well over 300, plus upgraded versions of the original routines, the new edition remains the most practical, comprehensive handbook of scientific computing available today.

Real World Haskell: Code You Can Believe In


Bryan O'Sullivan - 2008
    You'll learn how to use Haskell in a variety of practical ways, from short scripts to large and demanding applications. Real World Haskell takes you through the basics of functional programming at a brisk pace, and then helps you increase your understanding of Haskell in real-world issues like I/O, performance, dealing with data, concurrency, and more as you move through each chapter. With this book, you will:Understand the differences between procedural and functional programming Learn the features of Haskell, and how to use it to develop useful programs Interact with filesystems, databases, and network services Write solid code with automated tests, code coverage, and error handling Harness the power of multicore systems via concurrent and parallel programming You'll find plenty of hands-on exercises, along with examples of real Haskell programs that you can modify, compile, and run. Whether or not you've used a functional language before, if you want to understand why Haskell is coming into its own as a practical language in so many major organizations, Real World Haskell is the best place to start.

Dreaming in Code: Two Dozen Programmers, Three Years, 4,732 Bugs, and One Quest for Transcendent Software


Scott Rosenberg - 2007
    Along the way, we encounter black holes, turtles, snakes, dragons, axe-sharpening, and yak-shaving—and take a guided tour through the theories and methods, both brilliant and misguided, that litter the history of software development, from the famous ‘mythical man-month’ to Extreme Programming. Not just for technophiles but for anyone captivated by the drama of invention, Dreaming in Code offers a window into both the information age and the workings of the human mind.