We Are All Stardust: Leading Scientists Talk About Their Work, Their Lives, and the Mysteries of Our Existence


Stefan KleinWalter Ziegänsberger - 2010
    How does Jane Goodall’s relationship with her dog Rusty inform her thinking about our relationship to other species? Which time and place would Jared Diamond most prefer to live in, in light of his work on the role of chance in history? What does driving a sports car have to do with Steven Weinberg’s quest for the “theory of everything”? Physicist and journalist Stefan Klein’s intimate conversations with nineteen of the world’s best-known scientists (including three Nobel Laureates) let us listen in as they talk about their paradigm-changing work—and how it is deeply rooted in their daily lives. • Cosmologist Martin Rees on the beginning and end of the world • Evolutionary biologist Richard Dawkins on egoism and selflessness • Neuroscientist V. S. Ramachandran on consciousness • Molecular biologist Elizabeth Blackburn on aging • Philosopher Peter Singer on morality • Physician and social scientist Nicholas Christakis on human relationships • Biochemist Craig Venter on the human genome • Chemist and poet Roald Hoffmann on beauty

Periodic Table: Its Story and Its Significance


Eric Scerri - 2006
    It lies at the core of chemistry and embodies the most fundamental principles of the field. The one definitive text on the development of the periodic table by van Spronsen (1969), has been out of print for a considerable time.The present book provides a successor to van Spronsen, but goes further in giving an evaluation of the extent to which modern physics has, or has not, explained the periodic system. The book is written in a lively style to appeal to experts and interested lay-persons alike.The Periodic Table begins with an overview of the importance of the periodic table and of the elements and it examines the manner in which the term 'element' has been interpreted by chemists and philosophers. The book then turns to a systematic account of the early developments that led to theclassification of the elements including the work of Lavoisier, Boyle and Dalton and Cannizzaro. The precursors to the periodic system, like D�bereiner and Gmelin, are discussed. In chapter 3 the discovery of the periodic system by six independent scientists is examined in detail.Two chapters are devoted to the discoveries of Mendeleev, the leading discoverer, including his predictions of new elements and his accommodation of already existing elements. Chapters 6 and 7 consider the impact of physics including the discoveries of radioactivity and isotopy and successivetheories of the electron including Bohr's quantum theoretical approach. Chapter 8 discusses the response to the new physical theories by chemists such as Lewis and Bury who were able to draw on detailed chemical knowledge to correct some of the early electronic configurations published by Bohr andothers.Chapter 9 provides a critical analysis of the extent to which modern quantum mechanics is, or is not, able to explain the periodic system from first principles. Finally, chapter 10 considers the way that the elements evolved following the Big Bang and in the interior of stars. The book closeswith an examination of further chemical aspects including lesser known trends within the periodic system such as the knight's move relationship and secondary periodicity, as well at attempts to explain such trends.

The Neutrino: Ghost Particle of the Atom


Isaac Asimov - 1969
    

Physics and Philosophy: The Revolution in Modern Science


Werner Heisenberg - 1958
    The theme of Heisenberg's exposition is that words and concepts familiar in daily life can lose their meaning in the world of relativity and quantum physics. This in turn has profound philosophical implications for the nature of reality and for our total world view.

Bang!: The Complete History of the Universe


Brian May - 2006
    He's certainly been thinking about it lately. May, a freshly minted astrophysics Ph.D., joins forces with legendary astronomer Patrick Moore and astrophysicist Chris Lintott in Bang! to consider the history of the universe from the Big Bang to Heat Death.Space, time, and matter were birthed 13.7 billion years ago and will continue on longer than we are able to comprehend. Infinitesimally small at first, the Universe is immense and ever expanding. Bang! explains how it all started, takes you on a tour of what is known about the evolution of the Universe, and posits how the end of time will come about.This fascinating book includes photographs, short biographies of key figures, an at-a-glance timeline, a glossary of terms, and suggested resources for further exploration.Based on the work of history’s most brilliant scientific minds, this amazing story features clear, straightforward discussions of the most perplexing and compelling aspects of existence—from the formation of stars, planets, and other galactic bodies to black holes, quasars, anti-matter, and dark matter to the emergence of life and the possibility that it could exist elsewhere.Pick up a copy of Bang! It will, it will rock you.

Light: A Radiant History from Creation to the Quantum Age


Bruce Watson - 2016
    After sampling myths explaining First Light, the story moves on to early philosophers' queries, then through the centuries, from Buddhist temples to Biblical scripture, when light was the soul of the divine.Battling darkness and despair, Gothic architects crafted radiant cathedrals while Dante dreamed a "heaven of pure light." Later, following Leonardo's advice, Renaissance artists learned to capture light on canvas. During the Scientific Revolution, Galileo gathered light in his telescope, Descartes measured the rainbow, and Newton used prisms to solidify the science of optics. But even after Newton, light was an enigma. Particle or wave? Did it flow through an invisible "ether"? Through the age of Edison and into the age of lasers, Light reveals how light sparked new wonders--relativity, quantum electrodynamics, fiber optics, and more.Although lasers now perform everyday miracles, light retains its eternal allure. "For the rest of my life," Einstein said, "I will reflect on what light is." Light explores and celebrates such curiosity.

Entanglement


Amir D. Aczel - 2002
    No one could. Until now.Entanglement tells the astounding story of the scientists who set out to complete Einstein's work. With accesible language and a highly entertaining tone, Amir Aczel shows us a world where the improbable--from unbreakable codes to teleportation--becomes possible.

Einstein's Shadow: A Black Hole, a Band of Astronomers, and the Quest to See the Unseeable


Seth Fletcher - 2018
    But Shep Doeleman and a global coalition of scientists are on the cusp of doing just that.With exclusive access to the team, journalist Seth Fletcher spent five years following Shep and an extraordinary cast of characters as they assembled the Event Horizon Telescope, a virtual radio observatory the size of the Earth. He witnessed their struggles, setbacks, and breakthroughs, and along the way, he explored the latest thinking on the most profound questions about black holes. Do they represent a limit to our ability to understand reality? Or will they reveal the clues that lead to the long-sought Theory of Everything?Fletcher transforms astrophysics into something exciting, accessible, and immediate, taking us on an incredible adventure to better understand the complexity of our galaxy, the boundaries of human perception and knowledge, and how the messy human endeavor of science really works.Weaving a compelling narrative account of human ingenuity with excursions into cutting-edge science, Einstein’s Shadow is a tale of great minds on a mission to change the way we understand our universe—and our place in it.

The Invention of Science: The Scientific Revolution from 1500 to 1750


David Wootton - 2015
    Yet today, science and its practitioners have come under political attack. In this fascinating history spanning continents and centuries, historian David Wootton offers a lively defense of science, revealing why the Scientific Revolution was truly the greatest event in our history.The Invention of Science goes back five hundred years in time to chronicle this crucial transformation, exploring the factors that led to its birth and the people who made it happen. Wootton argues that the Scientific Revolution was actually five separate yet concurrent events that developed independently, but came to intersect and create a new worldview. Here are the brilliant iconoclasts—Galileo, Copernicus, Brahe, Newton, and many more curious minds from across Europe—whose studies of the natural world challenged centuries of religious orthodoxy and ingrained superstition.From gunpowder technology, the discovery of the new world, movable type printing, perspective painting, and the telescope to the practice of conducting experiments, the laws of nature, and the concept of the fact, Wotton shows how these discoveries codified into a social construct and a system of knowledge. Ultimately, he makes clear the link between scientific discovery and the rise of industrialization—and the birth of the modern world we know.

The Amazing Story of Quantum Mechanics: A Math-Free Exploration of the Science that Made Our World


James Kakalios - 2010
    Using illustrations and examples from science fiction pulp magazines and comic books, The Amazing Story of Quantum Mechanics explains the fundamental principles of quantum mechanics that underlie the world we live in.Watch a Video

Absolutely Small: How Quantum Theory Explains Our Everyday World


Michael D. Fayer - 2010
    And liberated from its mathematical underpinnings, physics suddenly becomes accessible to anyone with the curiosity and imagination to explore its beauty. Science without math? It's not that unusual. For example, we can understand the concept of gravity without solving a single equation. So for all those who may have pondered what makes blueberries blue and strawberries red; for those who have wondered if sound really travels in waves; and why light behaves so differently from any other phenomenon in the universe, it's all a matter of quantum physics. Absolutely Small presents (and demystifies) the world of quantum science like no book before. It explores scientific concepts--from particles of light, to probability, to states of matter, to what makes greenhouse gases bad--in considerable depth, but using examples from the everyday world. Challenging without being intimidating, accessible but not condescending, Absolutely Small develops the reader's intuition for the very nature of things at their most basic and intriguing levels.

The Philosophical Breakfast Club: Four Remarkable Friends Who Transformed Science and Changed the World


Laura J. Snyder - 2011
    Snyder exposes the political passions, religious impulses, friendships, rivalries, and love of knowledge—and power—that drove these extraordinary men.  Whewell (who not only invented the word “scientist,” but also founded the fields of crystallography, mathematical economics, and the science of tides), Babbage (a mathematical genius who invented the modern computer), Herschel (who mapped the skies of the Southern Hemisphere and contributed to the invention of photography), and Jones (a curate who shaped the science of economics) were at the vanguard of the modernization of science.  This absorbing narrative of people, science and ideas  chronicles the intellectual revolution inaugurated by these men, one that continues to mold our understanding of the world around us and of our place within it.  Drawing upon the voluminous correspondence between the four men over the fifty years of their work, Laura J. Snyder shows how friendship worked to spur the men on to greater accomplishments, and how it enabled them to transform science and help create the modern world.

Not Even Wrong: The Failure of String Theory and the Search for Unity in Physical Law


Peter Woit - 2006
    In Peter Woit's view, superstring theory is just such an idea. In Not Even Wrong , he shows that what many physicists call superstring "theory" is not a theory at all. It makes no predictions, even wrong ones, and this very lack of falsifiability is what has allowed the subject to survive and flourish. Not Even Wrong explains why the mathematical conditions for progress in physics are entirely absent from superstring theory today and shows that judgments about scientific statements, which should be based on the logical consistency of argument and experimental evidence, are instead based on the eminence of those claiming to know the truth. In the face of many books from enthusiasts for string theory, this book presents the other side of the story.

Spooky Action at a Distance: The Phenomenon That Reimagines Space and Time—and What It Means for Black Holes, the Big Bang, and Theories of Everything


George Musser - 2015
    Space is the venue of physics; it's where things exist, where they move and take shape. Yet over the past few decades, physicists have discovered a phenomenon that operates outside the confines of space and time: nonlocality-the ability of two particles to act in harmony no matter how far apart they may be. It appears to be almost magical. Einstein grappled with this oddity and couldn't come to terms with it, describing it as "spooky action at a distance." More recently, the mystery has deepened as other forms of nonlocality have been uncovered. This strange occurrence, which has direct connections to black holes, particle collisions, and even the workings of gravity, holds the potential to undermine our most basic understandings of physical reality. If space isn't what we thought it was, then what is it? In Spooky Action at a Distance, George Musser sets out to answer that question, offering a provocative exploration of nonlocality and a celebration of the scientists who are trying to explain it. Musser guides us on an epic journey into the lives of experimental physicists observing particles acting in tandem, astronomers finding galaxies that look statistically identical, and cosmologists hoping to unravel the paradoxes surrounding the big bang. He traces the often contentious debates over nonlocality through major discoveries and disruptions of the twentieth century and shows how scientists faced with the same undisputed experimental evidence develop wildly different explanations for that evidence. Their conclusions challenge our understanding of not only space and time but also the origins of the universe-and they suggest a new grand unified theory of physics. Delightfully readable, Spooky Action at a Distance is a mind-bending voyage to the frontiers of modern physics that will change the way we think about reality.Long-listed for the 2016 PEN/E. O. Wilson Literary Science Writing Award“An important book that provides insight into key new developments in our understanding of the nature of space, time and the universe. It will repay careful study.” —John Gribbin, The Wall Street Journal “An endlessly surprising foray into the current mother of physics' many knotty mysteries, the solving of which may unveil the weirdness of quantum particles, black holes, and the essential unity of nature.” —Kirkus Reviews (starred review)

The Shape of Inner Space: String Theory and the Geometry of the Universe's Hidden Dimensions


Shing-Tung Yau - 2010
    According to theorists, the missing six are curled up in bizarre structures known as Calabi-Yau manifolds. In The Shape of Inner Space, Shing-Tung Yau, the man who mathematically proved that these manifolds exist, argues that not only is geometry fundamental to string theory, it is also fundamental to the very nature of our universe.Time and again, where Yau has gone, physics has followed. Now for the first time, readers will follow Yau’s penetrating thinking on where we’ve been, and where mathematics will take us next. A fascinating exploration of a world we are only just beginning to grasp, The Shape of Inner Space will change the way we consider the universe on both its grandest and smallest scales.