Book picks similar to
Diffusions, Markov Processes and Martingales: Volume 2, Itô Calculus by L.C.G. Rogers
mathematics
stochastic
probability
processes
The Manga Guide to Calculus
Hiroyuki Kojima - 2005
She wants to cover the hard-hitting issues, like world affairs and politics, but does she have the smarts for it? Thankfully, her overbearing and math-minded boss, Mr. Seki, is here to teach her how to analyze her stories with a mathematical eye.In The Manga Guide to Calculus, you'll follow along with Noriko as she learns that calculus is more than just a class designed to weed out would-be science majors. You'll see that calculus is a useful way to understand the patterns in physics, economics, and the world around us, with help from real-world examples like probability, supply and demand curves, the economics of pollution, and the density of Shochu (a Japanese liquor).Mr. Seki teaches Noriko how to:Use differentiation to understand a function's rate of change Apply the fundamental theorem of calculus, and grasp the relationship between a function's derivative and its integral Integrate and differentiate trigonometric and other complicated functions Use multivariate calculus and partial differentiation to deal with tricky functions Use Taylor Expansions to accurately imitate difficult functions with polynomials Whether you're struggling through a calculus course for the first time or you just need a painless refresher, you'll find what you're looking for in The Manga Guide to Calculus.This EduManga book is a translation from a bestselling series in Japan, co-published with Ohmsha, Ltd. of Tokyo, Japan.
Ada Lovelace: A Life from Beginning to End (Biographies of Women in History Book 12)
Hourly History - 2019
Free BONUS Inside! As the sole legitimate child of Lord Byron, Ada Lovelace was the progeny of literary royalty. Many might have naturally expected her to go into the field of her father, but instead of delving into poetry, she delved into the hard sciences of mathematics and analytic thinking. Even so, Ada still had the imagination of a lyricist when writing scientific treatises, at times referring to her own work as nothing short of “poetical science.” Everything she did, she did with passion and dogged determination. It was this drive that led Ada to look farther and search deeper than her contemporaries. Her unique vision led her to become one of the pioneers of the modern computer and one of the world’s first computer programmers. But what exactly do we know about Ada Lovelace, and how can it be quantified? Read this book to find out more about the nineteenth-century mathematician and writer Augusta Ada King, Countess of Lovelace. Discover a plethora of topics such as
The Daughter of Lord and Lady Byron
Early Years of Paralysis
The World’s First Computer Programmer
Rumors and Laudanum Addiction
A Grim Prognosis
Last Days and Death
And much more!
So if you want a concise and informative book on Ada Lovelace, simply scroll up and click the "Buy now" button for instant access!
The Art of the Infinite: The Pleasures of Mathematics
Robert M. Kaplan - 1980
The Times called it elegant, discursive, and littered with quotes and allusions from Aquinas via Gershwin to Woolf and The Philadelphia Inquirer praised it as absolutely scintillating. In this delightful new book, Robert Kaplan, writing together with his wife Ellen Kaplan, once again takes us on a witty, literate, and accessible tour of the world of mathematics. Where The Nothing That Is looked at math through the lens of zero, The Art of the Infinite takes infinity, in its countless guises, as a touchstone for understanding mathematical thinking. Tracing a path from Pythagoras, whose great Theorem led inexorably to a discovery that his followers tried in vain to keep secret (the existence of irrational numbers); through Descartes and Leibniz; to the brilliant, haunted Georg Cantor, who proved that infinity can come in different sizes, the Kaplans show how the attempt to grasp the ungraspable embodies the essence of mathematics. The Kaplans guide us through the Republic of Numbers, where we meet both its upstanding citizens and more shadowy dwellers; and we travel across the plane of geometry into the unlikely realm where parallel lines meet. Along the way, deft character studies of great mathematicians (and equally colorful lesser ones) illustrate the opposed yet intertwined modes of mathematical thinking: the intutionist notion that we discover mathematical truth as it exists, and the formalist belief that math is true because we invent consistent rules for it. Less than All, wrote William Blake, cannot satisfy Man. The Art of the Infinite shows us some of the ways that Man has grappled with All, and reveals mathematics as one of the most exhilarating expressions of the human imagination.
Mathematical Mysteries: The Beauty and Magic of Numbers
Calvin C. Clawson - 1996
This recreational math book takes the reader on a fantastic voyage into the world of natural numbers. From the earliest discoveries of the ancient Greeks to various fundamental characteristics of the natural number sequence, Clawson explains fascinating mathematical mysteries in clear and easy prose. He delves into the heart of number theory to see and understand the exquisite relationships among natural numbers, and ends by exploring the ultimate mystery of mathematics: the Riemann hypothesis, which says that through a point in a plane, no line can be drawn parallel to a given line.While a professional mathematician's treatment of number theory involves the most sophisticated analytical tools, its basic ideas are surprisingly easy to comprehend. By concentrating on the meaning behind various equations and proofs and avoiding technical refinements, Mathematical Mysteries lets the common reader catch a glimpse of this wonderful and exotic world.
The Haskell Road to Logic, Maths and Programming
Kees Doets - 2004
Haskell emerged in the last decade as a standard for lazy functional programming, a programming style where arguments are evaluated only when the value is actually needed. Haskell is a marvellous demonstration tool for logic and maths because its functional character allows implementations to remain very close to the concepts that get implemented, while the laziness permits smooth handling of infinite data structures.This book does not assume the reader to have previous experience with either programming or construction of formal proofs, but acquaintance with mathematical notation, at the level of secondary school mathematics is presumed. Everything one needs to know about mathematical reasoning or programming is explained as we go along. After proper digestion of the material in this book the reader will be able to write interesting programs, reason about their correctness, and document them in a clear fashion. The reader will also have learned how to set up mathematical proofs in a structured way, and how to read and digest mathematical proofs written by others.
Applied Mathematics: A Very Short Introduction
Alain Goriely - 2018
While pure mathematics is mostly interested in abstract structures, applied mathematics sits at the interface between this abstract world and the world inwhich we live. This area of mathematics takes its nourishment from society and science and, in turn, provides a unified way to understand problems arising in diverse fields.This Very Short Introduction presents a compact yet comprehensive view of the field of applied mathematics, and explores its relationships with (pure) mathematics, science, and engineering. Explaining the nature of applied mathematics, Alain Goriely discusses its early achievements in physics andengineering, and its development as a separate field after World War II. Using historical examples, current applications, and challenges, Goriely illustrates the particular role that mathematics plays in the modern sciences today and its far-reaching potential.ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, andenthusiasm to make interesting and challenging topics highly readable.
Fantasia Mathematica
Clifton Fadiman - 1958
Ranging from the poignant to the comical via the simply surreal, these selections include writing by Aldous Huxley, Martin Gardner, H.G. Wells, George Gamow, G.H. Hardy, Robert Heinlein, Arthur C. Clarke, and many others. Humorous, mysterious, and always entertaining, this collection is sure to bring a smile to the faces of mathematicians and non-mathematicians alike.
A World Without Time: The Forgotten Legacy of Gödel And Einstein
Palle Yourgrau - 2004
By 1949, Godel had produced a remarkable proof: In any universe described by the Theory of Relativity, time cannot exist. Einstein endorsed this result reluctantly but he could find no way to refute it, since then, neither has anyone else. Yet cosmologists and philosophers alike have proceeded as if this discovery was never made. In A World Without Time, Palle Yourgrau sets out to restore Godel to his rightful place in history, telling the story of two magnificent minds put on the shelf by the scientific fashions of their day, and attempts to rescue the brilliant work they did together.
A Beautiful Math: John Nash, Game Theory, and the Modern Quest for a Code of Nature
Tom Siegfried - 2006
Today Nash's beautiful math has become a universal language for research in the social sciences and has infiltrated the realms of evolutionary biology, neuroscience, and even quantum physics. John Nash won the 1994 Nobel Prize in economics for pioneering research published in the 1950s on a new branch of mathematics known as game theory. At the time of Nash's early work, game theory was briefly popular among some mathematicians and Cold War analysts. But it remained obscure until the 1970s when evolutionary biologists began applying it to their work. In the 1980s economists began to embrace game theory. Since then it has found an ever expanding repertoire of applications among a wide range of scientific disciplines. Today neuroscientists peer into game players' brains, anthropologists play games with people from primitive cultures, biologists use games to explain the evolution of human language, and mathematicians exploit games to better understand social networks. A common thread connecting much of this research is its relevance to the ancient quest for a science of human social behavior, or a Code of Nature, in the spirit of the fictional science of psychohistory described in the famous Foundation novels by the late Isaac Asimov. In A Beautiful Math, acclaimed science writer Tom Siegfried describes how game theory links the life sciences, social sciences, and physical sciences in a way that may bring Asimov's dream closer to reality.
The Joy of Game Theory: An Introduction to Strategic Thinking
Presh Talwalkar - 2013
Articles from Game Theory Tuesdays have been referenced in The Freakonomics Blog, Yahoo Finance, and CNN.com. The second edition includes many streamlined explanations and incorporates suggestions from readers of the first edition. Game theory is the study of interactive decision making--that is, in situations where each person's action affects the outcome for the whole group. Game theory is a beautiful subject and this book will teach you how to understand the theory and practically implement solutions through a series of stories and the aid of over 30 illustrations. This book has two primary objectives. (1) To help you recognize strategic games, like the Prisoner's Dilemma, Bertrand Duopoly, Hotelling's Game, the Game of Chicken, and Mutually Assured Destruction. (2) To show you how to make better decisions and change the game, a powerful concept that can transform no-win situations into mutually beneficial outcomes. You'll learn how to negotiate better by making your threats credible, sometimes limiting options or burning bridges, and thinking about new ways to create better outcomes. As these goals indicate, game theory is about more than board games and gambling. It all seems so simple, and yet that definition belies the complexity of game theory. While it may only take seconds to get a sense of game theory, it takes a lifetime to appreciate and master it. This book will get you started.
Numbers: A Very Short Introduction
Peter M. Higgins - 2010
In this Very Short Introduction, Peter M. Higgins, a renowned popular-science writer, unravels the world of numbers, demonstrating its richness and providing an overview of all the number types that feature in modern science and mathematics. Indeed, Higgins paints a crystal-clear picture of the number world, showing how the modern number system matured over many centuries, and introducing key concepts such as integers, fractions, real and imaginary numbers, and complex numbers. Higgins sheds light on such fascinating topics as the series of primes, describing how primes are now used to encrypt confidential data on the internet. He also explores the infinite nature of number collections and explains how the so-called real numbers knit together to form the continuum of the number line. Written in the fashion of Higgins' highly popular science paperbacks, Numbers accurately explains the nature of numbers and how so-called complex numbers and number systems are used in calculations that arise in real problems.
Painless Algebra
Lynette Long - 1998
The author defines all terms, points out potential pitfalls in algebraic calculation, and makes problem solving a fun activity. New in this edition are painless approaches to understanding and graphing linear equations, solving systems of linear inequalities, and graphing quadratic equations. Barron’s popular Painless Series of study guides for middle school and high school students offer a lighthearted, often humorous approach to their subjects, transforming details that might once have seemed boring or difficult into a series of interesting and mentally challenging ideas. Most titles in the series feature many fun-to-solve “Brain Tickler” problems with answers at the end of each chapter.
The Calculus Lifesaver: All the Tools You Need to Excel at Calculus
Adrian Banner - 2007
The Calculus Lifesaver provides students with the essential tools they need not only to learn calculus, but to excel at it.All of the material in this user-friendly study guide has been proven to get results. The book arose from Adrian Banner's popular calculus review course at Princeton University, which he developed especially for students who are motivated to earn A's but get only average grades on exams. The complete course will be available for free on the Web in a series of videotaped lectures. This study guide works as a supplement to any single-variable calculus course or textbook. Coupled with a selection of exercises, the book can also be used as a textbook in its own right. The style is informal, non-intimidating, and even entertaining, without sacrificing comprehensiveness. The author elaborates standard course material with scores of detailed examples that treat the reader to an inner monologue--the train of thought students should be following in order to solve the problem--providing the necessary reasoning as well as the solution. The book's emphasis is on building problem-solving skills. Examples range from easy to difficult and illustrate the in-depth presentation of theory.The Calculus Lifesaver combines ease of use and readability with the depth of content and mathematical rigor of the best calculus textbooks. It is an indispensable volume for any student seeking to master calculus.Serves as a companion to any single-variable calculus textbookInformal, entertaining, and not intimidatingInformative videos that follow the book--a full forty-eight hours of Banner's Princeton calculus-review course--is available at Adrian Banner lecturesMore than 475 examples (ranging from easy to hard) provide step-by-step reasoningTheorems and methods justified and connections made to actual practiceDifficult topics such as improper integrals and infinite series covered in detailTried and tested by students taking freshman calculus
Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving
Sanjoy Mahajan - 2010
Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge--from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool--the general principle--from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.
Mathematician's Delight
W.W. Sawyer - 1943
Many people regard mathematicians as a race apart, possessed of almost supernatural powers. While this is very flattering for successful mathematicians, it is very bad for those who, for one reason or another, are attempting to learn the subject.'W.W. Sawyer's deep understanding of how we learn and his lively, practical approach have made this an ideal introduction to mathematics for generations of readers. By starting at the level of simple arithmetic and algebra and then proceeding step by step through graphs, logarithms and trigonometry to calculus and the dizzying world of imaginary numbers, the book takes the mystery out of maths. Throughout, Sawyer reveals how theory is subordinate to the real-life applications of mathematics - the Pyramids were built on Euclidean principles three thousand years before Euclid formulated them - and celebrates the sheer intellectual stimulus of mathematics at its best.