The Golden Section: Nature’s Greatest Secret
Scott Olsen - 2006
The Golden Section—otherwise known as phi, the golden mean, or the golden ratio—is one of the most elegant and beautiful rations in the universe.Defined as a line segment divided into two unequal parts, such that the ratio of the shorter portion to the longer portion is the same as the ratio of the longer portion to the whole, it pops up throughout nature—in water, DNA, the proportions of fish and butterflies, and the number of teeth we possess—as well as in art and architecture, music, philosophy, science, and mathematics.Beautifully illustrated, The Golden Section tells the story of this remarkable construct and its wide-ranging impact on civilization and the natural world.
Why Do Buses Come in Threes: The Hidden Mathematics of Everyday Life
Rob Eastaway - 1999
Why is it better to buy a lottery ticket on a Friday? Why are showers always too hot or too cold? And what's the connection between a rugby player taking a conversion and a tourist trying to get the best photograph of Nelson's Column?These and many other fascinating questions are answered in this entertaining and highly informative book, which is ideal for anyone wanting to remind themselves – or discover for the first time – that maths is relevant to almost everything we do.Dating, cooking, travelling by car, gambling and even life-saving techniques have links with intriguing mathematical problems, as you will find explained here. Whether you have a PhD in astrophysics or haven't touched a maths problem since your school days, this book will give you a fresh understanding of the world around you.
The Art of the Infinite: The Pleasures of Mathematics
Robert M. Kaplan - 1980
The Times called it elegant, discursive, and littered with quotes and allusions from Aquinas via Gershwin to Woolf and The Philadelphia Inquirer praised it as absolutely scintillating. In this delightful new book, Robert Kaplan, writing together with his wife Ellen Kaplan, once again takes us on a witty, literate, and accessible tour of the world of mathematics. Where The Nothing That Is looked at math through the lens of zero, The Art of the Infinite takes infinity, in its countless guises, as a touchstone for understanding mathematical thinking. Tracing a path from Pythagoras, whose great Theorem led inexorably to a discovery that his followers tried in vain to keep secret (the existence of irrational numbers); through Descartes and Leibniz; to the brilliant, haunted Georg Cantor, who proved that infinity can come in different sizes, the Kaplans show how the attempt to grasp the ungraspable embodies the essence of mathematics. The Kaplans guide us through the Republic of Numbers, where we meet both its upstanding citizens and more shadowy dwellers; and we travel across the plane of geometry into the unlikely realm where parallel lines meet. Along the way, deft character studies of great mathematicians (and equally colorful lesser ones) illustrate the opposed yet intertwined modes of mathematical thinking: the intutionist notion that we discover mathematical truth as it exists, and the formalist belief that math is true because we invent consistent rules for it. Less than All, wrote William Blake, cannot satisfy Man. The Art of the Infinite shows us some of the ways that Man has grappled with All, and reveals mathematics as one of the most exhilarating expressions of the human imagination.
Mathletics: How Gamblers, Managers, and Sports Enthusiasts Use Mathematics in Baseball, Basketball, and Football
Wayne L. Winston - 2009
How does professional baseball evaluate hitters? Is a singles hitter like Wade Boggs more valuable than a power hitter like David Ortiz? Should NFL teams pass or run more often on first downs? Could professional basketball have used statistics to expose the crooked referee Tim Donaghy? Does money buy performance in professional sports?In Mathletics, Wayne Winston describes the mathematical methods that top coaches and managers use to evaluate players and improve team performance, and gives math enthusiasts the practical tools they need to enhance their understanding and enjoyment of their favorite sports--and maybe even gain the outside edge to winning bets. Mathletics blends fun math problems with sports stories of actual games, teams, and players, along with personal anecdotes from Winston's work as a sports consultant. Winston uses easy-to-read tables and illustrations to illuminate the techniques and ideas he presents, and all the necessary math concepts--such as arithmetic, basic statistics and probability, and Monte Carlo simulations--are fully explained in the examples.After reading Mathletics, you will understand why baseball teams should almost never bunt, why football overtime systems are unfair, why points, rebounds, and assists aren't enough to determine who's the NBA's best player--and much, much more.
Math Appeal: Mind-Stretching Math Riddles
Greg Tang - 2003
Keeping an open mind, looking for unusual number combinations, using multiple skills (like subtracting to add) and looking for patterns will guarantee any child success in math. In MATH APPEAL, Tang continues to challenge kids with his innovative approach to math.
Leadership and Crisis
Bobby Jindal - 2010
And from the Deepwater Horizon oil disaster to Hurricane Katrina, he’s shown an astounding ability to beat the odds (and beat the bureaucrats) to get things done.Then again, Jindal is not your typical politician. The son of Indian immigrants, a Christian convert from Hinduism, and a Rhodes Scholar, Jindal presided over Louisiana’s healthcare system at age 24, headed the University of Louisiana system at 27, became a U.S. congressman at 33, and was elected governor of Louisiana at 36.Throughout his meteoric career, Jindal has dealt with some of the worst crises of our times, from natural disasters in his home state to out-of-control spending in Washington, D.C. His secret: the common sense solutions that bureaucrats (and politicians) ignore in favor of government–as–usual.In Leadership and Crisis, Jindal reveals: How the Obama administration spent too much time worrying about public perception and not enough on actually fighting the oil How the federal government actually impeded Louisiana’s efforts to stem the flood of oil Why the bureaucratic incompetence during Hurricane Katrina was even worse than you know How Bobby Jindal took on Louisiana’s infamous culture of corruption His own journey from Hinduism to Christianity, from student at Oxford to Governor of Louisiana, from policy wonk to instant midwife when he had to deliver his third child himself Filled with behind–the–scenes stories from the oil–slicked beaches of Louisiana to the corridors of power in the U.S. Capitol, Leadership and Crisis offers an insider’s view into one of the worst environmental disasters our nation has suffered—and into one of the most unique success stories of American politics.
Street-Fighting Mathematics: The Art of Educated Guessing and Opportunistic Problem Solving
Sanjoy Mahajan - 2010
Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation.In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge--from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool--the general principle--from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems.Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.
101 Things Everyone Should Know About Economics: A Down and Dirty Guide to Everything from Securities and Derivatives to Interest Rates and Hedge Funds - And What They Mean For You
Peter Sander - 2009
This easy-to-understand guide answers all the questions you need to know to secure your financial future, such as: What does it mean to my paycheck when the Fed lowers or raises interest rates?What's the difference between bonds, securities, and derivatives - and which should I invest in now?What does Keynesian economics have to do with my savings? For those people whose heads spin when reading the business pages of the newspaper, here's a roadmap through the economic jungle. In simple, plain language, Peter Sander explains how economies work, why they grow, how they contract, and what the government can and can't do to help them. Most important, he tells you how all this affects "you" - and what kind of changes you're going to see in your finances as a result.Economics has been called the dismal" science. But it doesn't need to be gloomy or impenetrable. This book is an essential guide for anyone who wants to understand where the economy is today, where it's going, and what it means for the rest of us."
The Heart of Mathematics: An Invitation to Effective Thinking
Edward B. Burger - 1999
In this new, innovative overview textbook, the authors put special emphasis on the deep ideas of mathematics, and present the subject through lively and entertaining examples, anecdotes, challenges and illustrations, all of which are designed to excite the student's interest. The underlying ideas include topics from number theory, infinity, geometry, topology, probability and chaos theory. Throughout the text, the authors stress that mathematics is an analytical way of thinking, one that can be brought to bear on problem solving and effective thinking in any field of study.
Painless Algebra
Lynette Long - 1998
The author defines all terms, points out potential pitfalls in algebraic calculation, and makes problem solving a fun activity. New in this edition are painless approaches to understanding and graphing linear equations, solving systems of linear inequalities, and graphing quadratic equations. Barron’s popular Painless Series of study guides for middle school and high school students offer a lighthearted, often humorous approach to their subjects, transforming details that might once have seemed boring or difficult into a series of interesting and mentally challenging ideas. Most titles in the series feature many fun-to-solve “Brain Tickler” problems with answers at the end of each chapter.
How to read and do proofs
Daniel Solow - 1982
Shows how any proof can be understood as a sequence of techniques. Covers the full range of techniques used in proofs, such as the contrapositive, induction, and proof by contradiction. Explains how to identify which techniques are used and how they are applied in the specific problem. Illustrates how to read written proofs with many step-by-step examples. Includes new, expanded appendices related to discrete mathematics, linear algebra, modern algebra and real analysis.
Entertaining Mathematical Puzzles
Martin Gardner - 1986
Puzzlists need only an elementary knowledge of math and a will to resist looking up the answer before trying to solve a problem.Written in a light and witty style, Entertaining Mathematical Puzzles is a mixture of old and new riddles, grouped into sections that cover a variety of mathematical topics: money, speed, plane and solid geometry, probability, topology, tricky puzzles, and more. The probability section, for example, points out that everything we do, everything that happens around us, obeys the laws of probability; geometry puzzles test our ability to think pictorially and often, in more than one dimension; while topology, among the "youngest and rowdiest branches of modern geometry," offers a glimpse into a strange dimension where properties remain unchanged, no matter how a figure is twisted, stretched, or compressed.Clear and concise comments at the beginning of each section explain the nature and importance of the math needed to solve each puzzle. A carefully explained solution follows each problem. In many cases, all that is needed to solve a puzzle is the ability to think logically and clearly, to be "on the alert for surprising, off-beat angles...that strange hidden factor that everyone else had overlooked."Fully illustrated, this engaging collection will appeal to parents and children, amateur mathematicians, scientists, and students alike, and may, as the author writes, make the reader "want to study the subject in earnest" and explains "some of the inviting paths that wind away from the problems into lusher areas of the mathematical jungle." 65 black-and-white illustrations.
Mystery Math: A First Book of Algebra
David A. Adler - 2011
Luckily, algebra will help you solve each problem. By using simple addition, subtraction, mulitplication, and division, you'll discover that solving math mysteries isn't scary at all -- it's fun!
In the Wonderland of Numbers: Maths and Your Child
Shakuntala Devi - 2006
The specialities of each individual number, from zero to nine, and the little mathematical tricks as shown by Shakuntala Devi, all combine to make the reader learn to befriend numbers and excel at maths.