Book picks similar to
Introduction to Computational Science: Modeling and Simulation for the Sciences by Angela B. Shiflet
science
mathematics
computer-science
non-fiction
Computability and Logic
George S. Boolos - 1980
Including a selection of exercises, adjusted for this edition, at the end of each chapter, it offers a new and simpler treatment of the representability of recursive functions, a traditional stumbling block for students on the way to the Godel incompleteness theorems.
The Problem with Software: Why Smart Engineers Write Bad Code
Adam Barr - 2018
As the size and complexity of commercial software have grown, the gap between academic computer science and industry has widened. It's an open secret that there is little engineering in software engineering, which continues to rely not on codified scientific knowledge but on intuition and experience.Barr, who worked as a programmer for more than twenty years, describes how the industry has evolved, from the era of mainframes and Fortran to today's embrace of the cloud. He explains bugs and why software has so many of them, and why today's interconnected computers offer fertile ground for viruses and worms. The difference between good and bad software can be a single line of code, and Barr includes code to illustrate the consequences of seemingly inconsequential choices by programmers. Looking to the future, Barr writes that the best prospect for improving software engineering is the move to the cloud. When software is a service and not a product, companies will have more incentive to make it good rather than "good enough to ship."
Intermediate Perl
Randal L. Schwartz - 2003
One slogan of Perl is that it makes easy things easy and hard things possible. "Intermediate Perl" is about making the leap from the easy things to the hard ones.Originally released in 2003 as "Learning Perl Objects, References, and Modules" and revised and updated for Perl 5.8, this book offers a gentle but thorough introduction to intermediate programming in Perl. Written by the authors of the best-selling "Learning Perl," it picks up where that book left off. Topics include: Packages and namespacesReferences and scopingManipulating complex data structuresObject-oriented programmingWriting and using modulesTesting Perl codeContributing to CPANFollowing the successful format of "Learning Perl," we designed each chapter in the book to be small enough to be read in just an hour or two, ending with a series of exercises to help you practice what you've learned. To use the book, you just need to be familiar with the material in "Learning Perl" and have ambition to go further.Perl is a different language to different people. It is a quick scripting tool for some, and a fully-featured object-oriented language for others. It is used for everything from performing quick global replacements on text files, to crunching huge, complex sets of scientific data that take weeks to process. Perl is what you make of it. But regardless of what you use Perl for, this book helps you do it more effectively, efficiently, and elegantly."Intermediate Perl" is about learning to use Perl as a programming language, and not just a scripting language. This is the book that turns the Perl dabbler into the Perl programmer.
Joel on Software
Joel Spolsky - 2004
For years, Joel Spolsky has done exactly this at www.joelonsoftware.com. Now, for the first time, you can own a collection of the most important essays from his site in one book, with exclusive commentary and new insights from joel.
Machine Learning with R
Brett Lantz - 2014
This practical guide that covers all of the need to know topics in a very systematic way. For each machine learning approach, each step in the process is detailed, from preparing the data for analysis to evaluating the results. These steps will build the knowledge you need to apply them to your own data science tasks.Intended for those who want to learn how to use R's machine learning capabilities and gain insight from your data. Perhaps you already know a bit about machine learning, but have never used R; or perhaps you know a little R but are new to machine learning. In either case, this book will get you up and running quickly. It would be helpful to have a bit of familiarity with basic programming concepts, but no prior experience is required.
Absolute Beginner's Guide to C
Greg Perry - 1993
This bestseller talks to readers at their level, explaining every aspect of how to get started and learn the C language quickly. Readers also find out where to learn more about C. This book includes tear-out reference card of C functions and statements, a hierarchy chart, and other valuable information. It uses special icons, notes, clues, warnings, and rewards to make understanding easier. And the clear and friendly style presumes no programming knowledge.
Ansible for DevOps
Jeff Geerling - 2015
This book will help those familiar the command line and basic shell scripting start using Ansible to provision and manage anywhere from one to thousands of servers.The book begins with fundamentals, like installing Ansible, setting up a basic inventory file, and basic concepts, then guides you through Ansible's many uses, including ad-hoc commands, basic and advanced playbooks, application deployments, custom modules, and special cases like running ansible in 'pull' mode when you have thousands of servers to manage (or more). Everything is explained with pertinent real-world examples, often using Vagrant-managed virtual machines.
The Mathematical Theory of Communication
Claude Shannon - 1949
Republished in book form shortly thereafter, it has since gone through four hardcover and sixteen paperback printings. It is a revolutionary work, astounding in its foresight and contemporaneity. The University of Illinois Press is pleased and honored to issue this commemorative reprinting of a classic.
SQL and Relational Theory: How to Write Accurate SQL Code
C.J. Date - 2009
On the other hand, if you're not well versed in the theory, you can fall into several traps. In SQL and Relational Theory, author C.J. Date demonstrates how you can apply relational theory directly to your use of SQL. With numerous examples and clear explanations of the reasoning behind them, you'll learn how to deal with common SQL dilemmas, such as:Should database access granted be through views instead of base tables? Nulls in your database are causing you to get wrong answers. Why? What can you do about it? Could you write an SQL query to find employees who have never been in the same department for more than six months at a time? SQL supports "quantified comparisons," but they're better avoided. Why? How do you avoid them? Constraints are crucially important, but most SQL products don't support them properly. What can you do to resolve this situation? Database theory and practice have evolved since Edgar Codd originally defined the relational model back in 1969. Independent of any SQL products, SQL and Relational Theory draws on decades of research to present the most up-to-date treatment of the material available anywhere. Anyone with a modest to advanced background in SQL will benefit from the many insights in this book.
Introduction to Machine Learning with Python: A Guide for Data Scientists
Andreas C. Müller - 2015
If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Muller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.With this book, you'll learn:Fundamental concepts and applications of machine learningAdvantages and shortcomings of widely used machine learning algorithmsHow to represent data processed by machine learning, including which data aspects to focus onAdvanced methods for model evaluation and parameter tuningThe concept of pipelines for chaining models and encapsulating your workflowMethods for working with text data, including text-specific processing techniquesSuggestions for improving your machine learning and data science skills
Game Changer: AlphaZero's Groundbreaking Chess Strategies and the Promise of AI
Matthew Sadler - 2019
The artificial intelligence system, created by DeepMind, had been fed nothing but the rules of the Royal Game when it beat the world’s strongest chess engine in a prolonged match. The selection of ten games published in December 2017 created a worldwide sensation: how was it possible to play in such a brilliant and risky style and not lose a single game against an opponent of superhuman strength?For Game Changer, Matthew Sadler and Natasha Regan investigated more than two thousand previously unpublished games by AlphaZero. They also had unparalleled access to its team of developers and were offered a unique look ‘under the bonnet’ to grasp the depth and breadth of AlphaZero’s search. Sadler and Regan reveal its thinking process and tell the story of the human motivation and the techniques that created AlphaZero.Game Changer also presents a collection of lucidly explained chess games of astonishing quality. Both professionals and club players will improve their game by studying AlphaZero’s stunning discoveries in every field that matters: opening preparation, piece mobility, initiative, attacking techniques, long-term sacrifices and much more.The story of AlphaZero has a wider impact. Game Changer offers intriguing insights into the opportunities and horizons of Artificial Intelligence. Not just in solving games, but in providing solutions for a wide variety of challenges in society.With a foreword by former World Chess Champion Garry Kasparov and an introduction by DeepMind CEO Demis Hassabis.Matthew Sadler (1974) is a Grandmaster who twice won the British Championship and was awarded an individual Gold Medal at the 1996 Olympiad. He has authored several highly acclaimed books on chess and has been writing the famous ‘Sadler on Books’ column for New In Chess magazine for many years. Natasha Regan is a Women’s International Master from England who achieved a degree in mathematics from Cambridge University. Matthew Sadler and Natasha Regan won the English Chess Federation 2016 Book of the Award for their book Chess for Life.
Effective Java
Joshua Bloch - 2001
The principal enhancement in Java 8 was the addition of functional programming constructs to Java's object-oriented roots. Java 7, 8, and 9 also introduced language features, such as the try-with-resources statement, the diamond operator for generic types, default and static methods in interfaces, the @SafeVarargs annotation, and modules. New library features include pervasive use of functional interfaces and streams, the java.time package for manipulating dates and times, and numerous minor enhancements such as convenience factory methods for collections. In this new edition of Effective Java, Bloch updates the work to take advantage of these new language and library features, and provides specific best practices for their use. Java's increased support for multiple paradigms increases the need for best-practices advice, and this book delivers. As in previous editions, each chapter consists of several "items," each presented in the form of a short, standalone essay that provides specific advice, insight into Java platform subtleties, and updated code examples. The comprehensive descriptions and explanations for each item illuminate what to do, what not to do, and why. Coverage includes:Updated techniques and best practices on classic topics, including objects, classes, methods, libraries, and generics How to avoid the traps and pitfalls of commonly misunderstood subtleties of the platform Focus on the language and its most fundamental libraries, such as java.lang and java.util