Pythagoras's Trousers: God, Physics, and the Gender War


Margaret Wertheim - 1995
    From its inception, Margaret Wertheim shows, physics has been an overwhelmingly male-dominated activity; she argues that gender inequity in physics is a result of the religious origins of the enterprise.Pythagoras' Trousers is a highly original history of one of science's most powerful disciplines. It is also a passionate argument for the need to involve both women and men in the process of shaping the technologies from the next generation of physicists.

My Catholic Faith!


My Catholic Life! - 2015
    We want to know! We want to know the purpose of our life, why we are here on earth, where we came from, whether there is a God, who this God is, whether there is an afterlife, and so much more! These most basic and fundamental questions are hopefully in the forefront of our minds. And if they are not, it's never too late to start! This book offers some of the answers to these questions. It offers the answers found is our Creed. At first, the Creed can seem dry and unimpressive. It can even seem confusing and overly academic. But when properly understood, the Creed holds the answer to the questions we so deeply seek.

A Beautiful Question: Finding Nature's Deep Design


Frank Wilczek - 2015
    Wilczek’s groundbreaking work in quantum physics was inspired by his intuition to look for a deeper order of beauty in nature. In fact, every major advance in his career came from this intuition: to assume that the universe embodies beautiful forms, forms whose hallmarks are symmetry—harmony, balance, proportion—and economy. There are other meanings of “beauty,” but this is the deep logic of the universe—and it is no accident that it is also at the heart of what we find aesthetically pleasing and inspiring.Wilczek is hardly alone among great scientists in charting his course using beauty as his compass. As he reveals in A Beautiful Question, this has been the heart of scientific pursuit from Pythagoras, the ancient Greek who was the first to argue that “all things are number,” to Galileo, Newton, Maxwell, Einstein, and into the deep waters of twentiethcentury physics. Though the ancients weren’t right about everything, their ardent belief in the music of the spheres has proved true down to the quantum level. Indeed, Wilczek explores just how intertwined our ideas about beauty and art are with our scientific understanding of the cosmos.Wilczek brings us right to the edge of knowledge today, where the core insights of even the craziest quantum ideas apply principles we all understand. The equations for atoms and light are almost literally the same equations that govern musical instruments and sound; the subatomic particles that are responsible for most of our mass are determined by simple geometric symmetries. The universe itself, suggests Wilczek, seems to want to embody beautiful and elegant forms. Perhaps this force is the pure elegance of numbers, perhaps the work of a higher being, or somewhere between. Either way, we don’t depart from the infinite and infinitesimal after all; we’re profoundly connected to them, and we connect them. When we find that our sense of beauty is realized in the physical world, we are discovering something about the world, but also something about ourselves.Gorgeously illustrated, A Beautiful Question is a mind-shifting book that braids the age-old quest for beauty and the age-old quest for truth into a thrilling synthesis. It is a dazzling and important work from one of our best thinkers, whose humor and infectious sense of wonder animate every page. Yes: The world is a work of art, and its deepest truths are ones we already feel, as if they were somehow written in our souls.

Spacetime Physics


Edwin F. Taylor - 1966
    Written by two of the field's true pioneers, Spacetime Physics can extend and enhance coverage of specialty relativity in the classroom. This thoroughly up-to-date, highly accessible overview covers microgravity, collider accelerators, satellite probes, neutron detectors, radioastronomy, and pulsars.  The chapter on general relativity with new material on gravity waves, black holes, and cosmology.

The Singular Universe and the Reality of Time: A Proposal in Natural Philosophy


Roberto Mangabeira Unger - 2014
    The more we discover, the more puzzling the universe appears to be. How and why are the laws of nature what they are? A philosopher and a physicist, world-renowned for their radical ideas in their fields, argue for a revolution. To keep cosmology scientific, we must replace the old view in which the universe is governed by immutable laws by a new one in which laws evolve. Then we can hope to explain them. The revolution that Roberto Mangabeira Unger and Lee Smolin propose relies on three central ideas. There is only one universe at a time. Time is real: everything in the structure and regularities of nature changes sooner or later. Mathematics, which has trouble with time, is not the oracle of nature and the prophet of science; it is simply a tool with great power and immense limitations. The argument is readily accessible to non-scientists as well as to the physicists and cosmologists whom it challenges.

Mysticism and the New Physics


Michael Talbot - 1980
    An account of how quantum physics is putting forward ideas that confirm the perceived beliefs of mystics who think the world is an illusion

The Field: The Quest for the Secret Force of the Universe


Lynne McTaggart - 2003
    Original, well researched, and well documented by distinguished sources, The Field is a book of hope and inspiration for today's world.

Infinite Powers: How Calculus Reveals the Secrets of the Universe


Steven H. Strogatz - 2019
    We wouldn’t have unraveled DNA or discovered Neptune or figured out how to put 5,000 songs in your pocket. Though many of us were scared away from this essential, engrossing subject in high school and college, Steven Strogatz’s brilliantly creative, down‑to‑earth history shows that calculus is not about complexity; it’s about simplicity. It harnesses an unreal number—infinity—to tackle real‑world problems, breaking them down into easier ones and then reassembling the answers into solutions that feel miraculous. Infinite Powers recounts how calculus tantalized and thrilled its inventors, starting with its first glimmers in ancient Greece and bringing us right up to the discovery of gravitational waves (a phenomenon predicted by calculus). Strogatz reveals how this form of math rose to the challenges of each age: how to determine the area of a circle with only sand and a stick; how to explain why Mars goes “backwards” sometimes; how to make electricity with magnets; how to ensure your rocket doesn’t miss the moon; how to turn the tide in the fight against AIDS. As Strogatz proves, calculus is truly the language of the universe. By unveiling the principles of that language, Infinite Powers makes us marvel at the world anew.

Show Me God: What the Message from Space is Telling Us about God


Fred Heeren - 1996
    In this book, author Fred Heeren tells why even Einstein had to revise his thinking to bring it in line with the Bible's claims. Through Heeren's interviews with Steven Hawking and Nobel prize-winning physicists, you'll learn why many leading cosmologists today are bringing God into the equation.

Five Equations That Changed the World


Michael Guillen - 1995
    Michael Guillen, known to millions as the science editor of ABC's Good Morning America, tells the fascinating stories behind five mathematical equations. As a regular contributor to daytime's most popular morning news show and an instructor at Harvard University, Dr. Michael Guillen has earned the respect of millions as a clear and entertaining guide to the exhilarating world of science and mathematics. Now Dr. Guillen unravels the equations that have led to the inventions and events that characterize the modern world, one of which -- Albert Einstein's famous energy equation, E=mc2 -- enabled the creation of the nuclear bomb. Also revealed are the mathematical foundations for the moon landing, airplane travel, the electric generator -- and even life itself. Praised by Publishers Weekly as "a wholly accessible, beautifully written exploration of the potent mathematical imagination," and named a Best Nonfiction Book of 1995, the stories behind The Five Equations That Changed the World, as told by Dr. Guillen, are not only chronicles of science, but also gripping dramas of jealousy, fame, war, and discovery. Dr. Michael Guillen is Instructor of Physics and Mathematics in the Core Curriculum Program at Harvard University.

The Space Race: A History From Beginning to End


Hourly History - 2018
     During fourteen years, from 1955 to 1969, the Soviet Union and the United States of America were engaged in a dramatic race against each other to conquer space. This period encompassed dramatic victories, humbling defeats, and more than one tragedy. This is a story of human courage and ingenuity at its best and political maneuvering at its worst, of almost unbelievable technological progress undertaken with the object not just of advancing human knowledge but also of proving the superiority of one country over another. Inside you will read about... ✓ From Missiles to Rockets ✓ Russia Takes the Lead ✓ Early American Failures ✓ The First Men in Space ✓ Fatalities on Both Sides ✓ The Moon Landing And much more! The space race culminated in man setting foot upon the moon, but each milestone on the way to that final goal was bitterly contested. Two powerful nations pledged a substantial part of their national resources to beat the other in a scientific and technological race to be the first to achieve new records. In terms of contests between major powers, there has never been anything quite as dramatic, public, and sustained as the space race; it remains one of the most fascinating and engaging episodes of the Cold War.

Quantum Physics for Beginners: From Wave Theory to Quantum Computing. Understanding How Everything Works by a Simplified Explanation of Quantum Physics and Mechanics Principles


Carl J. Pratt - 2021
    

The Ascent of Science


Brian L. Silver - 1990
    Silver translates our most important, and often most obscure, scientific developments into a vernacular that is not only accessible and illuminating but also enjoyable. Silver makes his comprehensive case with much clarity and insight; his book aptly locates science as the apex of human reason, and reason as our best path to the truth. For all readers curious about--or else perhaps intimidated by--what Silver calls the scientific campaign up to now in his Preface, The Ascent of Science will be fresh, vivid, and fascinating reading.

Dance of the Photons: From Einstein to Quantum Teleportation


Anton Zeilinger - 2003
    Accordingly, he once derided as "spooky action at a distance" the notion that two elementary particles far removed from each other could nonetheless influence each other's properties—a hypothetical phenomenon his fellow theorist Erwin Schrödinger termed "quantum entanglement."In a series of ingenious experiments conducted in various locations—from a dank sewage tunnel under the Danube River to the balmy air between a pair of mountain peaks in the Canary Islands—the author and his colleagues have demonstrated the reality of such entanglement using photons, or light quanta, created by laser beams. In principle the lessons learned may be applicable in other areas, including the eventual development of quantum computers.

The Tangled Tree: A Radical New History of Life


David Quammen - 2018
    In the mid-1970s, scientists began using DNA sequences to reexamine the history of all life. Perhaps the most startling discovery to come out of this new field—the study of life’s diversity and relatedness at the molecular level—is horizontal gene transfer (HGT), or the movement of genes across species lines. It turns out that HGT has been widespread and important. For instance, we now know that roughly eight percent of the human genome arrived not through traditional inheritance from directly ancestral forms, but sideways by viral infection—a type of HGT.David Quammen chronicles these discoveries through the lives of the researchers who made them—such as Carl Woese, the most important little-known biologist of the twentieth century; Lynn Margulis, the notorious maverick whose wild ideas about “mosaic” creatures proved to be true; and Tsutomu Wantanabe, who discovered that the scourge of antibiotic-resistant bacteria is a direct result of horizontal gene transfer, bringing the deep study of genome histories to bear on a global crisis in public health.