Book picks similar to
Numerical Analysis by Walter Gautschi
textbooks
math
65-numerical-analysis
ebooks
Physics for Scientists and Engineers: A Strategic Approach with Modern Physics [with MasteringPhysics]
Randall D. Knight - 2003
0321513339 / 9780321513335 Physics for Scientists and Engineers: A Strategic Approach with Modern Physics and MasteringPhysics� Package consists of 0321513576 / 9780321513571 Student Workbook for Physics for Scientists and Engineers: A Strategic Approach with Modern Physics 0321516397 / 9780321516398 MasteringPhysics� with E-book Student Access Kit for Physics for Scientists and Engineers: A Strategic Approach 0805327363 / 9780805327366 Physics for Scientists and Engineers: A Strategic Approach with Modern Physics
Digital Design and Computer Architecture
David Money Harris - 2007
Digital Design and Computer Architecture begins with a modern approach by rigorously covering the fundamentals of digital logic design and then introducing Hardware Description Languages (HDLs). Featuring examples of the two most widely-used HDLs, VHDL and Verilog, the first half of the text prepares the reader for what follows in the second: the design of a MIPS Processor. By the end of Digital Design and Computer Architecture, readers will be able to build their own microprocessor and will have a top-to-bottom understanding of how it works--even if they have no formal background in design or architecture beyond an introductory class. David Harris and Sarah Harris combine an engaging and humorous writing style with an updated and hands-on approach to digital design.Unique presentation of digital logic design from the perspective of computer architecture using a real instruction set, MIPS.Side-by-side examples of the two most prominent Hardware Design Languages--VHDL and Verilog--illustrate and compare the ways the each can be used in the design of digital systems.Worked examples conclude each section to enhance the reader's understanding and retention of the material.
Complex Variables and Applications
James Ward Brown - 1960
It uses examples and exercise sets, with clear explanations of problem-solving techniqes and material on the further theory of functions.
Machine Learning: A Probabilistic Perspective
Kevin P. Murphy - 2012
Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.
Vector Mechanics for Engineers: Statics
Ferdinand P. Beer - 1977
Following on the success of the first six editions of the series, this work introduces theoretical and pedagogical innovations in statics, dynamics, and mechanics of materials education.
Computational Complexity
Christos H. Papadimitriou - 1993
It offers a comprehensive and accessible treatment of the theory of algorithms and complexity—the elegant body of concepts and methods developed by computer scientists over the past 30 years for studying the performance and limitations of computer algorithms. The book is self-contained in that it develops all necessary mathematical prerequisites from such diverse fields such as computability, logic, number theory and probability.
Applied Predictive Modeling
Max Kuhn - 2013
Non- mathematical readers will appreciate the intuitive explanations of the techniques while an emphasis on problem-solving with real data across a wide variety of applications will aid practitioners who wish to extend their expertise. Readers should have knowledge of basic statistical ideas, such as correlation and linear regression analysis. While the text is biased against complex equations, a mathematical background is needed for advanced topics. Dr. Kuhn is a Director of Non-Clinical Statistics at Pfizer Global R&D in Groton Connecticut. He has been applying predictive models in the pharmaceutical and diagnostic industries for over 15 years and is the author of a number of R packages. Dr. Johnson has more than a decade of statistical consulting and predictive modeling experience in pharmaceutical research and development. He is a co-founder of Arbor Analytics, a firm specializing in predictive modeling and is a former Director of Statistics at Pfizer Global R&D. His scholarly work centers on the application and development of statistical methodology and learning algorithms. Applied Predictive Modeling covers the overall predictive modeling process, beginning with the crucial steps of data preprocessing, data splitting and foundations of model tuning. The text then provides intuitive explanations of numerous common and modern regression and classification techniques, always with an emphasis on illustrating and solving real data problems. Addressing practical concerns extends beyond model fitting to topics such as handling class imbalance, selecting predictors, and pinpointing causes of poor model performance-all of which are problems that occur frequently in practice. The text illustrates all parts of the modeling process through many hands-on, real-life examples. And every chapter contains extensive R code f
Introductory Circuit Analysis
Robert L. Boylestad - 1968
Features exceptionally clear explanations and descriptions, step-by-step examples, more than 50 practical applications, over 2000 easy-to-challenging practice problems, and comprehensive coverage of essentials. PSpice, OrCAd version 9.2 Lite Edition, Multisims 2001 version of Electronics Workbench, and MathCad software references and examples are used throughout. Computer programs (C++, BASIC and PSpice) are printed in color, as they run, at the point in the book where they are discussed. Current and Voltage. Resistance. Ohm's Law, Power, and Energy. Series Circuits. Parallel Circuits. Series-Parallel Networks. Methods of Analysis & Selected Topics. Network Theorems. Capacitors. Magnetic Circuits. Inductors. Sinusodial Alternating Waveforms. The Basic Elements and Phasors. Series and Parallel ac Circuits. Series-Parallel ac Networks. Methods of Analysis and Related Topics. Network Theorems (ac). Power (ac). Resonance. Transformers. Polyphase Systems. Decibels, Filters, and Bode Points. Pulse Waveforms and the R-C Response. Nonsinusodial Circuits. System Analysis: An Introduction. For those working in electronic technology.
Learning From Data: A Short Course
Yaser S. Abu-Mostafa - 2012
Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.
Game Theory 101: The Basics
William Spaniel - 2011
From the first lesson to the last, each chapter introduces games of increasing complexity and then teaches the game theoretical tools necessary to solve them. Inside, you will find:
All the basics fully explained, including pure strategy Nash equilibrium, mixed strategy Nash equilibrium, the mixed strategy algorithm, how to calculate payoffs, strict dominance, weak dominance, iterated elimination of strictly dominated strategies, iterated elimination of weakly dominated strategies, and more!
Dozens of games solved, including the prisoner's dilemma, stag hunt, matching pennies, zero sum games, battle of the sexes/Bach or Stravinsky, chicken/snowdrift, pure coordination, deadlock, and safety in numbers!
Crystal clear, line-by-line calculations of every step, with more than 200 images so you don't miss a thing!
Tons of applications: war, trade, game shows, and duopolistic competition.
Quick, efficient, and to the point, Game Theory 101: The Basics is perfect for introductory game theory, intermediate microeconomics, and political science.
Partial Differential Equations for Scientists and Engineers
Stanley J. Farlow - 1982
Indeed, such equations are crucial to mathematical physics. Although simplifications can be made that reduce these equations to ordinary differential equations, nevertheless the complete description of physical systems resides in the general area of partial differential equations.This highly useful text shows the reader how to formulate a partial differential equation from the physical problem (constructing the mathematical model) and how to solve the equation (along with initial and boundary conditions). Written for advanced undergraduate and graduate students, as well as professionals working in the applied sciences, this clearly written book offers realistic, practical coverage of diffusion-type problems, hyperbolic-type problems, elliptic-type problems, and numerical and approximate methods. Each chapter contains a selection of relevant problems (answers are provided) and suggestions for further reading.
An Introduction to Probability Theory and Its Applications, Volume 1
William Feller - 1968
Beginning with the background and very nature of probability theory, the book then proceeds through sample spaces, combinatorial analysis, fluctuations in coin tossing and random walks, the combination of events, types of distributions, Markov chains, stochastic processes, and more. The book's comprehensive approach provides a complete view of theory along with enlightening examples along the way.
Introduction to Probability
Dimitri P. Bertsekas - 2002
This is the currently used textbook for "Probabilistic Systems Analysis," an introductory probability course at the Massachusetts Institute of Technology, attended by a large number of undergraduate and graduate students. The book covers the fundamentals of probability theory (probabilistic models, discrete and continuous random variables, multiple random variables, and limit theorems), which are typically part of a first course on the subject. It also contains, a number of more advanced topics, from which an instructor can choose to match the goals of a particular course. These topics include transforms, sums of random variables, least squares estimation, the bivariate normal distribution, and a fairly detailed introduction to Bernoulli, Poisson, and Markov processes. The book strikes a balance between simplicity in exposition and sophistication in analytical reasoning. Some of the more mathematically rigorous analysis has been just intuitively explained in the text, but is developed in detail (at the level of advanced calculus) in the numerous solved theoretical problems. The book has been widely adopted for classroom use in introductory probability courses within the USA and abroad.
Understanding Digital Signal Processing
Richard G. Lyons - 1996
This second edition is appropriate as a supplementary (companion) text for any college-level course covering digital signal processing.