Book picks similar to
Gravity: Cracking the Cosmic Code by Nicholas Mee
physics
science
quantum
lend
Fundamentals: Ten Keys to Reality
Frank Wilczek - 2021
. . . Wilczek writes with breathtaking economy and clarity, and his pleasure in his subject is palpable." --The New York Times Book Review One of our great contemporary scientists reveals the ten profound insights that illuminate what everyone should know about the physical worldIn Fundamentals, Nobel laureate Frank Wilczek offers the reader a simple yet profound exploration of reality based on the deep revelations of modern science. With clarity and an infectious sense of joy, he guides us through the essential concepts that form our understanding of what the world is and how it works. Through these pages, we come to see our reality in a new way--bigger, fuller, and stranger than it looked before.Synthesizing basic questions, facts, and dazzling speculations, Wilczek investigates the ideas that form our understanding of the universe: time, space, matter, energy, complexity, and complementarity. He excavates the history of fundamental science, exploring what we know and how we know it, while journeying to the horizons of the scientific world to give us a glimpse of what we may soon discover. Brilliant, lucid, and accessible, this celebration of human ingenuity and imagination will expand your world and your mind.
Neutrino Hunters: The Thrilling Chase for a Ghostly Particle to Unlock the Secrets of the Universe
Ray Jayawardhana - 2013
Extremely elusive and difficult to pin down, neutrinos are not unlike the brilliant and eccentric scientists who doggedly pursue them.In Neutrino Hunters, the renowned astrophysicist and award-winning writer Ray Jayawardhana takes us on a thrilling journey into the shadowy world of neutrinos and the colorful lives of those who seek them. Demystifying particle science along the way, Jayawardhana tells a detective story with cosmic implications—interweaving tales of the sharp-witted theorist Wolfgang Pauli; the troubled genius Ettore Majorana; the harbinger of the atomic age Enrico Fermi; the notorious Cold War defector Bruno Pontecorvo; and the dynamic dream team of Marie and Pierre Curie. Then there are the scientists of today who have caught the neutrino bug, and whose experimental investigations stretch from a working nickel mine in Ontario to a long tunnel through a mountain in central Italy, from a nuclear waste site in New Mexico to a bay on the South China Sea, and from Olympic-size pools deep underground to a gigantic cube of Antarctic ice—called, naturally, IceCube.As Jayawardhana recounts a captivating saga of scientific discovery and celebrates a glorious human quest, he reveals why the next decade of neutrino hunting will redefine how we think about physics, cosmology, and our lives on Earth.
Just Six Numbers: The Deep Forces That Shape the Universe
Martin J. Rees - 1999
There are deep connections between stars and atoms, between the cosmos and the microworld. Just six numbers, imprinted in the "big bang," determine the essential features of our entire physical world. Moreover, cosmic evolution is astonishingly sensitive to the values of these numbers. If any one of them were "untuned," there could be no stars and no life. This realization offers a radically new perspective on our universe, our place in it, and the nature of physical laws.
Antimatter
Frank Close - 2009
It is also one of the most difficult, literally and figuratively, to grasp. Antimatter explores this strange mirror world, where particles have identical yet opposite properties to those that make up the familiar matter we encounter everyday, where left becomes right, positive becomes negative, and where--should matter and antimatter meet--the resulting flash of blinding energy would make even thermonuclear explosions look feeble by comparison. Antimatter is an idea long beloved of science-fiction writers--but here, renowned science writer Frank Close shows that the reality of antimatter is even more intriguing than the fiction. We know that at one time antimatter and matter existed in perfect counterbalance, and that antimatter then perpetrated a vanishing act on a cosmic scale that remains one of the great mysteries of the universe. Today, antimatter does not exist normally, at least on Earth, but we know that it is real, as scientists are now able to make small pieces of it in particle accelerators, such as that at CERN in Geneva. Looking at the remarkable prediction of antimatter and how it grew from the meeting point of relativity and quantum theory in the early 20th century, at the discovery of the first antiparticles, at cosmic rays, annihilation, antimatter bombs, and antiworlds, Close separates the facts from the fiction about antimatter, and explains how its existence can give us profound clues about the origins and structure of the universe. For all those wishing to take a closer look at the flip side of the visible world, this lucidly written book shines a bright light into a truly strange realm. "Beautifully written... This book will inspire a sense of awe in even the most seasoned of physics readers." --Amanda Gefter, New Scientist "This is a must read for fans of science and science fiction alike." --John Gribbin, www.bbcfocusmagazine.com
15 Million Degrees: A Journey to the Centre of the Sun
Lucie Green - 2016
But its journey within the Sun takes hundreds of thousands of years. What is going on in there? What are light and heat? How does the Sun produce them and how on earth did scientists discover this?In this astonishing and enlightening adventure, you'll travel millions of miles from inside the Sun to its surface and to Earth, where the light at the end of its journey is allowing you to read right now. You'll discover how the Sun works (including what it sounds like), the latest research in solar physics and how a solar storm could threaten everything we know. And you'll meet the groundbreaking scientists, including the author, who pieced this extraordinary story together.
Quantum Mechanics: The Theoretical Minimum
Leonard Susskind - 2014
Now, physicist Leonard Susskind has teamed up with data engineer Art Friedman to present the theory and associated mathematics of the strange world of quantum mechanics.In this follow-up to The Theoretical Minimum, Susskind and Friedman provide a lively introduction to this famously difficult field, which attempts to understand the behavior of sub-atomic objects through mathematical abstractions. Unlike other popularizations that shy away from quantum mechanics’ weirdness, Quantum Mechanics embraces the utter strangeness of quantum logic. The authors offer crystal-clear explanations of the principles of quantum states, uncertainty and time dependence, entanglement, and particle and wave states, among other topics, and each chapter includes exercises to ensure mastery of each area. Like The Theoretical Minimum, this volume runs parallel to Susskind’s eponymous Stanford University-hosted continuing education course.An approachable yet rigorous introduction to a famously difficult topic, Quantum Mechanics provides a tool kit for amateur scientists to learn physics at their own pace.
Big Bang: The Origin of the Universe
Simon Singh - 2004
In this amazingly comprehensible history of the universe, Simon Singh decodes the mystery behind the Big Bang theory, lading us through the development of one of the most extraordinary, important, and awe-inspiring theories in science.
Young Einstein: From the Doxerl Affair to the Miracle Year
L. Randles Lagerstrom - 2013
In 1905 an unknown 26-year-old clerk at the Swiss Patent Office, who had supposedly failed math in school, burst on to the scientific scene and swept away the hidebound theories of the day. The clerk, Albert Einstein, introduced a new and unexpected understanding of the universe and launched the two great revolutions of twentieth-century physics, relativity and quantum mechanics. The obscure origin and wide-ranging brilliance of the work recalled Isaac Newton’s “annus mirabilis” (miracle year) of 1666, when as a 23-year-old seeking safety at his family manor from an outbreak of the plague, he invented calculus and laid the foundations for his theory of gravity. Like Newton, Einstein quickly became a scientific icon--the image of genius and, according to Time magazine, the Person of the Century.The actual story is much more interesting. Einstein himself once remarked that “science as something coming into being ... is just as subjectively, psychologically conditioned as are all other human endeavors.” In this profile, the historian of science L. Randles Lagerstrom takes you behind the myth and into the very human life of the young Einstein. From family rifts and girlfriend troubles to financial hardships and jobless anxieties, Einstein’s early years were typical of many young persons. And yet in the midst of it all, he also saw his way through to profound scientific insights. Drawing upon correspondence from Einstein, his family, and his friends, Lagerstrom brings to life the young Einstein and enables the reader to come away with a fuller and more appreciative understanding of Einstein the person and the origins of his revolutionary ideas.About the cover image: While walking to work six days a week as a patent clerk in Bern, Switzerland, Einstein would pass by the famous "Zytglogge" tower and its astronomical clocks. The daily juxtaposition was fitting, as the relative nature of time and clock synchronization would be one of his revolutionary discoveries in the miracle year of 1905.
Einstein's Dice and Schrödinger's Cat: How Two Great Minds Battled Quantum Randomness to Create a Unified Theory of Physics
Paul Halpern - 2015
Einstein famously quipped that God does not play dice with the universe, and Schrödinger is equally well known for his thought experiment about the cat in the box who ends up “spread out” in a probabilistic state, neither wholly alive nor wholly dead. Both of these famous images arose from these two men’s dissatisfaction with quantum weirdness and with their assertion that underneath it all, there must be some essentially deterministic world. Even though it was Einstein’s own theories that made quantum mechanics possible, both he and Schrödinger could not bear the idea that the universe was, at its most fundamental level, random.As the Second World War raged, both men struggled to produce a theory that would describe in full the universe’s ultimate design, first as collaborators, then as competitors. They both ultimately failed in their search for a Grand Unified Theory—not only because quantum mechanics is true, but because Einstein and Schrödinger were also missing a key component: of the four forces we recognize today (gravity, electromagnetism, the weak force, and the strong force), only gravity and electromagnetism were known at the time.Despite their failures, though, much of modern physics remains focused on the search for a Grand Unified Theory. As Halpern explains, the recent discovery of the Higgs Boson makes the Standard Model—the closest thing we have to a unified theory—nearly complete. And while Einstein and Schrödinger tried and failed to explain everything in the cosmos through pure geometry, the development of string theory has, in its own quantum way, brought this idea back into vogue. As in so many things, even when he was wrong, Einstein couldn’t help but be right.
It's Not Rocket Science
Ben Miller - 2012
DNA. The Large Hadron Collider. Ever had that sneaking feeling that you are missing out on some truly spectacular science?You do? Well fear not, for help is at hand.Ben Miller was working on his Physics PhD at Cambridge when he accidentally became a comedian. But first love runs deep, and he has returned to his roots to share with you all his favourite bits of science. This is the stuff that you really need to know, not only because it matters, but because it will quite simply amaze and delight you."Let me show you another, perhaps less familiar side of Science; her beauty, her seductiveness and her passion. And let's do it quickly, while Maths isn't looking!"
What If?: Randall Munroe | Serious Scientific Answers to Absurd Hypothetical Questions | Summary & Takeaways
Brief Books - 2015
This book is a supplement to What If? and intended to enhance the experience of reading the original book. We recommend purchasing the full version of What If? on Amazon in addition to this book. Introduction What If? Serious Scientific Answers to Absurd Hypothetical Questions presents a wide variety of questions covering a range of dubious potentialities and the results which would ensue should they become reality. The questions are collected from author Randall Munroe’s website, where they are sent in by readers of his blog. Some of the questions are conceptual, for example how much force would be required for Yoda to lift an X-fighter, others are in a more serious vein. All of the answers however are based on research and the application of scientific principles by the author, himself trained in physics and a former roboticist for NASA. Benefits
Spend less time reading and more time enjoying your favorite books.
Discover important details you may have missed the first time.
Review key concepts in an easy-to-understand and efficient manner.
Use as a reference or "cheat sheet" to quickly access important information.
Pick up where you left off with the original book.
Focus only on critical information and eliminate unnecessary details.
Buy Now Buy Now: Only $2.99 (Save $3.00 or 50%, Regular Price: $5.99) Money Back Guarantee: If you are not 100% satisfied with your purchase, simply return it to Amazon within 7 days of purchase for a full refund. Go to Your Account -> Manage Your Content and Devices -> Find the Book -> Return for Full Refund. Read Now: Your book will be delivered to your Kindle device or free Kindle software automatically.
The God Particle: If the Universe Is the Answer, What Is the Question?
Leon M. Lederman - 1993
The book takes us from the Greeks' earliest scientific observations through Einstein and beyond in an inspiring celebration of human curiosity. It ends with the quest for the Higgs boson, nicknamed the God Particle, which scientists hypothesize will help unlock the last secrets of the subatomic universe. With a new preface by Lederman, The God Particle will leave you marveling at our continuing pursuit of the infinitesimal.
What on Earth Happened?... In Brief: The Planet, Life & People from the Big Bang to the Present Day
Christopher Lloyd - 2009
In this thrill-ride across millennia and continents, the complete history of the planet comes to life: from the Earth's fiery birth to its near-obliteration in the Triassic period, and from the first signs of human life to the tentative future of a world with a burgeoning population and a global warming crisis. Covering a wide range of topics including astrophysics, zoology, and sociology, and complete with maps and illustrations, What on Earth Happened? In Brief is the endlessly entertaining story of the planet, life, and people.
Smashing Physics
Jon Butterworth - 2014
Two scientists, Peter Higgs and François Englert, whose theories predicted its existence, shared a Nobel Prize. The discovery was the culmination of the largest experiment ever run, the ATLAS and CMS experiments at CERN's Large Hadron Collider.But what really is a Higgs boson and what does it do? How was it found? And how has its discovery changed our understanding of the fundamental laws of nature? And what did it feel like to be part of it?Jon Butterworth is one of the leading physicists at CERN and this book is the first popular inside account of the hunt for the Higgs. It is a story of incredible scientific collaboration, inspiring technological innovation and ground-breaking science. It is also the story of what happens when the world's most expensive experiment blows up, of neutrinos that may or may not travel faster than light, and the reality of life in an underground bunker in Switzerland.This book will also leave you with a working knowledge of the new physics and what the discovery of the Higgs particle means for how we define the laws of nature. It will take you to the cutting edge of modern scientific thinking.
Einstein's Unfinished Revolution: The Search for What Lies Beyond the Quantum
Lee Smolin - 2019
It is the basis of our understanding of atoms, radiation, and so much else, from elementary particles and basic forces to the behaviour of materials. But for a century it has also been the problem child of science, plagued by intense disagreements between its intellectual giants, from Albert Einstein to Stephen Hawking, over the strange paradoxes and implications that seem like the stuff of fantasy. Whether it's Schr�dinger's cat--a creature that is simultaneously dead and alive--or a belief that the world does not exist independently of our observations of it, quantum theory is what challenges our fundamental assumptions about our reality. In Einstein's Unfinished Revolution, globally renowned theoretical physicist Lee Smolin provocatively argues that the problems which have bedeviled quantum physics since its inception are unsolved for the simple reason that the theory is incomplete. There is more, waiting to be discovered. Our task--if we are to have simple answers to our simple questions about the universe we live in--must be to go beyond it to a description of the world on an atomic scale that makes sense. In this vibrant and accessible book, Smolin takes us on a journey through the basics of quantum physics, introducing the stories of the experiments and figures that have transformed the field, before wrestling with the puzzles and conundrums that they present. Along the way, he illuminates the existing theories about the quantum world that might solve these problems, guiding us toward his own vision that embraces common sense realism. If we are to have any hope of completing the revolution that Einstein began nearly a century ago, we must go beyond quantum mechanics as we know it to find a theory that will give us a complete description of nature. In Einstein's Unfinished Revolution, Lee Smolin brings us a step closer to resolving one of the greatest scientific controversies of our age.