Book picks similar to
Probability With The Binomial Distribution And Pascal's Triangle: A Key Idea In Statistics by Scott Hartshorn
mathematics
21-teaching-maths-wide
22-teaching-study-core
6-tbr-get
The Eudaemonic Pie
Thomas A. Bass - 1985
“The result is a veritable pi
The Tiger That Isn't: Seeing Through a World of Numbers
Michael Blastland - 2007
Too often, that power is abused and the numbers bamboozle. This book shows how to see straight through them - and how to seize the power for yourself. Public spending, health risks, environmental disasters, who is rich, who is poor, Aids or war deaths, pensions, teenage offenders, the best and worst schools and hospitals, immigration - life comes in numbers. The trick to seeing through them is strikingly simple. It is to apply something everyone has - the lessons of their own experience. Using vivid and everyday images and ideas, this book shows how close to hand insight and understanding can be, and how we can all use what is familiar to make sense of what is baffling. It is also a revelation - of how little the principles are understood even by many who claim to know better. This book is written by the team who created and present the hugely popular BBC Radio 4 series, More or Less.
Imagining Numbers
Barry Mazur - 2002
This book reveals how anyone can begin to visualize the enigmatic 'imaginary numbers' that first baffled mathematicians in the 16th century.
The Art of Mathematics
Jerry P. King - 1992
Jerry King is no exception. His informal, nontechnical book, as its title implies, is organized around what Bertrand Russell called the 'supreme beauty' of mathematics--a beauty 'capable of a stern perfection such as only the greatest art can show.'NATUREIn this clear, concise, and superbly written volume, mathematics professor and poet Jerry P. King reveals the beauty that is at the heart of mathematics--and he makes that beauty accessible to all readers. Darting wittily from Euclid to Yeats, from Poincare to Rembrandt, from axioms to symphonies, THE ART OF MATHEMATICS explores the difference between real, rational, and complex numbers; analyzes the intellectual underpinnings of pure and applied mathematics; and reveals the fundamental connection between aesthetics and mathematics. King also sheds light on how mathematicians pursue their research and how our educational system perpetuates the damaging divisions between the two cultures.
The Art of Statistics: How to Learn from Data
David Spiegelhalter - 2019
Statistics are everywhere, as integral to science as they are to business, and in the popular media hundreds of times a day. In this age of big data, a basic grasp of statistical literacy is more important than ever if we want to separate the fact from the fiction, the ostentatious embellishments from the raw evidence -- and even more so if we hope to participate in the future, rather than being simple bystanders. In The Art of Statistics, world-renowned statistician David Spiegelhalter shows readers how to derive knowledge from raw data by focusing on the concepts and connections behind the math. Drawing on real world examples to introduce complex issues, he shows us how statistics can help us determine the luckiest passenger on the Titanic, whether a notorious serial killer could have been caught earlier, and if screening for ovarian cancer is beneficial. The Art of Statistics not only shows us how mathematicians have used statistical science to solve these problems -- it teaches us how we too can think like statisticians. We learn how to clarify our questions, assumptions, and expectations when approaching a problem, and -- perhaps even more importantly -- we learn how to responsibly interpret the answers we receive. Combining the incomparable insight of an expert with the playful enthusiasm of an aficionado, The Art of Statistics is the definitive guide to stats that every modern person needs.
Big Data Baseball: Math, Miracles, and the End of a 20-Year Losing Streak
Travis Sawchik - 2015
Pittsburghers joked their town was the city of champions…and the Pirates. Big Data Baseball is the story of how the 2013 Pirates, mired in the longest losing streak in North American pro sports history, adopted drastic big-data strategies to end the drought, make the playoffs, and turn around the franchise's fortunes.Award-winning journalist Travis Sawchik takes you behind the scenes to expertly weave together the stories of the key figures who changed the way the small-market Pirates played the game. For manager Clint Hurdle and the front office staff to save their jobs, they could not rely on a free agent spending spree, instead they had to improve the sum of their parts and find hidden value. They had to change. From Hurdle shedding his old-school ways to work closely with Neal Huntington, the forward-thinking data-driven GM and his team of talented analysts; to pitchers like A. J. Burnett and Gerrit Cole changing what and where they threw; to Russell Martin, the undervalued catcher whose expert use of the nearly-invisible skill of pitch framing helped the team's pitchers turn more balls into strikes; to Clint Barmes, a solid shortstop and one of the early adopters of the unconventional on-field shift which forced the entire infield to realign into positions they never stood in before. Under Hurdle's leadership, a culture of collaboration and creativity flourished as he successfully blended whiz kid analysts with graybeard coaches—a kind of symbiotic teamwork which was unique to the sport.Big Data Baseball is Moneyball on steroids. It is an entertaining and enlightening underdog story that uses the 2013 Pirates season as the perfect lens to examine the sport's burgeoning big-data movement. With the help of data-tracking systems like PitchF/X and TrackMan, the Pirates collected millions of data points on every pitch and ball in play to create a tome of color-coded reports that revealed groundbreaking insights for how to win more games without spending a dime. In the process, they discovered that most batters struggled to hit two-seam fastballs, that an aggressive defensive shift on the field could turn more batted balls into outs, and that a catcher's most valuable skill was hidden. All these data points which aren't immediately visible to players and spectators, are the bit of magic that led the Pirates to spin straw in to gold, finish the 2013 season in second place, end a twenty-year losing streak.
My Brain is Open: The Mathematical Journeys of Paul Erdős
Bruce Schechter - 1998
Hungarian-born Erdős believed that the meaning of life was to prove and conjecture. His work in the United States and all over the world has earned him the titles of the century's leading number theorist and the most prolific mathematician who ever lived. Erdős's important work has proved pivotal to the development of computer science, and his unique personality makes him an unforgettable character in the world of mathematics. Incapable of the smallest of household tasks and having no permanent home or job, he was sustained by the generosity of colleagues and by his own belief in the beauty of numbers. Witty and filled with the sort of mathematical puzzles that intrigued Erdős and continue to fascinate mathematicians today, My Brain Is Open is the story of this strange genius and a journey in his footsteps through the world of mathematics, where universal truths await discovery like hidden treasures and where brilliant proofs are poetry.
Football Hackers: The Science and Art of a Data Revolution
Christoph Biermann - 2019
Football's data revolution has only just begun. The arrival of advanced metrics and detailed analysis is already reshaping the modern game. We can now fully assess player performance, analyse the role of luck and measure what really leads to victory. There is no turning back.Now the race is on between football's wealthiest clubs and a group of outsiders, nerds and rule-breakers, who are turning the game on its head with their staggering innovations. Winning is no longer just about what happens out on the pitch, it's now a battle taking place in boardrooms and on screens across international borders with the world's brightest minds driving for an edge over their fiercest rivals.Christoph Biermann has moved in the midst of these disruptive upheavals, talking to scientists, coaches, managers, scouts and psychologists in the world's major clubs, traveling across Europe and the US and revealing the hidden - and often jaw-dropping - truths behind the beautiful game. 'A book full of exciting ideas and inside views on modern football. The most exciting book in an exciting time for football.' Thomas Hitzlsperger
The Calendar
David Ewing Duncan - 1998
The year 2000 is alternatively the year 2544 (Buddhist), 6236 (Ancient Egyptian), 5761 (Jewish) or simply the Year of the Dragon (Chinese). The story of the creation of the Western calendar, which is related in this book, is a story of emperors and popes, mathematicians and monks, and the growth of scientific calculation to the point where, bizarrely, our measurement of time by atomic pulses is now more accurate than time itself: the Earth is an elderly lady and slightly eccentric - she loses half a second a century. Days have been invented (Julius Caesar needed an extra 80 days in 46BC), lost (Pope Gregory XIII ditched ten days in 1582) and moved (because Julius Caesar had 31 in his month, Augustus determined that he should have the same, so he pinched one from February).
Using Multivariate Statistics
Barbara G. Tabachnick - 1983
It givessyntax and output for accomplishing many analyses through the mostrecent releases of SAS, SPSS, and SYSTAT, some not available insoftware manuals. The book maintains its practical approach, stillfocusing on the benefits and limitations of applications of a techniqueto a data set -- when, why, and how to do it. Overall, it providesadvanced students with a timely and comprehensive introduction totoday's most commonly encountered statistical and multivariatetechniques, while assuming only a limited knowledge of higher-levelmathematics.
Proofs from the Book, 3e
Martin Aigner - 1998
Inside PFTB (Proofs from The Book) is indeed a glimpse of mathematical heaven, where clever insights and beautiful ideas combine in astonishing and glorious ways. There is vast wealth within its pages, one gem after another. Some of the proofs are classics, but many are new and brilliant proofs of classical results. ...Aigner and Ziegler... write: ..". all we offer is the examples that we have selected, hoping that our readers will share our enthusiasm about brilliant ideas, clever insights and wonderful observations." I do. ... " Notices of the AMS, August 1999..". the style is clear and entertaining, the level is close to elementary ... and the proofs are brilliant. ..." LMS Newsletter, January 1999This third edition offers two new chapters, on partition identities, and on card shuffling. Three proofs of Euler's most famous infinite series appear in a separate chapter. There is also a number of other improvements, such as an exciting new way to "enumerate the rationals."
Weird Math: A Teenage Genius and His Teacher Reveal the Strange Connections Between Math and Everyday Life
David Darling - 2018
As teen math prodigy Agnijo Banerjee and his teacher David Darling reveal, complex math surrounds us. If we think long enough about the universe, we're left not with material stuff, but a ghostly and beautiful set of equations. Packed with puzzles and paradoxes, mind-bending concepts, and surprising solutions, Weird Math leads us from a lyrical exploration of mathematics in our universe to profound questions about God, chance, and infinity. A magical introduction to the mysteries of math, it will entrance beginners and seasoned mathematicians alike.
The Improbability Principle: Why Coincidences, Miracles, and Rare Events Happen Every Day
David J. Hand - 2014
Hand argues that extraordinarily rare events are anything but. In fact, they’re commonplace. Not only that, we should all expect to experience a miracle roughly once every month. But Hand is no believer in superstitions, prophecies, or the paranormal. His definition of “miracle” is thoroughly rational. No mystical or supernatural explanation is necessary to understand why someone is lucky enough to win the lottery twice, or is destined to be hit by lightning three times and still survive. All we need, Hand argues, is a firm grounding in a powerful set of laws: the laws of inevitability, of truly large numbers, of selection, of the probability lever, and of near enough. Together, these constitute Hand’s groundbreaking Improbability Principle. And together, they explain why we should not be so surprised to bump into a friend in a foreign country, or to come across the same unfamiliar word four times in one day. Hand wrestles with seemingly less explicable questions as well: what the Bible and Shakespeare have in common, why financial crashes are par for the course, and why lightning does strike the same place (and the same person) twice. Along the way, he teaches us how to use the Improbability Principle in our own lives—including how to cash in at a casino and how to recognize when a medicine is truly effective. An irresistible adventure into the laws behind “chance” moments and a trusty guide for understanding the world and universe we live in, The Improbability Principle will transform how you think about serendipity and luck, whether it’s in the world of business and finance or you’re merely sitting in your backyard, tossing a ball into the air and wondering where it will land.
Mathematics for the Million: How to Master the Magic of Numbers
Lancelot Hogben - 1937
His illuminating explanation is addressed to the person who wants to understand the place of mathematics in modern civilization but who has been intimidated by its supposed difficulty. Mathematics is the language of size, shape, and order—a language Hogben shows one can both master and enjoy.
The Half-life of Facts: Why Everything We Know Has an Expiration Date
Samuel Arbesman - 2012
Smoking has gone from doctor recommended to deadly. We used to think the Earth was the center of the universe and that Pluto was a planet. For decades, we were convinced that the brontosaurus was a real dinosaur. In short, what we know about the world is constantly changing. But it turns out there’s an order to the state of knowledge, an explanation for how we know what we know. Samuel Arbesman is an expert in the field of scientometrics—literally the science of science. Knowledge in most fields evolves systematically and predictably, and this evolution unfolds in a fascinating way that can have a powerful impact on our lives. Doctors with a rough idea of when their knowledge is likely to expire can be better equipped to keep up with the latest research. Companies and governments that understand how long new discoveries take to develop can improve decisions about allocating resources. And by tracing how and when language changes, each of us can better bridge generational gaps in slang and dialect. Just as we know that a chunk of uranium can break down in a measurable amount of time—a radioactive half-life—so too any given field’s change in knowledge can be measured concretely. We can know when facts in aggregate are obsolete, the rate at which new facts are created, and even how facts spread. Arbesman takes us through a wide variety of fields, including those that change quickly, over the course of a few years, or over the span of centuries. He shows that much of what we know consists of “mesofacts”—facts that change at a middle timescale, often over a single human lifetime. Throughout, he offers intriguing examples about the face of knowledge: what English majors can learn from a statistical analysis of The Canterbury Tales, why it’s so hard to measure a mountain, and why so many parents still tell kids to eat their spinach because it’s rich in iron. The Half-life of Facts is a riveting journey into the counterintuitive fabric of knowledge. It can help us find new ways to measure the world while accepting the limits of how much we can know with certainty.