Q.E.D.: Beauty in Mathematical Proof


Burkard Polster - 2004
    presents some of the most famous mathematical proofs in a charming book that will appeal to nonmathematicians and math experts alike. Grasp in an instant why Pythagoras's theorem must be correct. Follow the ancient Chinese proof of the volume formula for the frustrating frustum, and Archimedes' method for finding the volume of a sphere. Discover the secrets of pi and why, contrary to popular belief, squaring the circle really is possible. Study the subtle art of mathematical domino tumbling, and find out how slicing cones helped save a city and put a man on the moon.

Introduction to Graph Theory


Richard J. Trudeau - 1994
    This book leads the reader from simple graphs through planar graphs, Euler's formula, Platonic graphs, coloring, the genus of a graph, Euler walks, Hamilton walks, more. Includes exercises. 1976 edition.

A Mathematician Plays The Stock Market


John Allen Paulos - 2003
    In A Mathematician Plays the Stock Market , best-selling author John Allen Paulos employs his trademark stories, vignettes, paradoxes, and puzzles to address every thinking reader's curiosity about the market -- Is it efficient? Is it random? Is there anything to technical analysis, fundamental analysis, and other supposedly time-tested methods of picking stocks? How can one quantify risk? What are the most common scams? Are there any approaches to investing that truly outperform the major indexes? But Paulos's tour through the irrational exuberance of market mathematics doesn't end there. An unrequited (and financially disastrous) love affair with WorldCom leads Paulos to question some cherished ideas of personal finance. He explains why "data mining" is a self-fulfilling belief, why "momentum investing" is nothing more than herd behavior with a lot of mathematical jargon added, why the ever-popular Elliot Wave Theory cannot be correct, and why you should take Warren Buffet's "fundamental analysis" with a grain of salt. Like Burton Malkiel's A Random Walk Down Wall Street , this clever and illuminating book is for anyone, investor or not, who follows the markets -- or knows someone who does.

An Introduction to Non-Classical Logic


Graham Priest - 2001
    Part 1, on propositional logic, is the old Introduction, but contains much new material. Part 2 is entirely new, and covers quantification and identity for all the logics in Part 1. The material is unified by the underlying theme of world semantics. All of the topics are explained clearly using devices such as tableau proofs, and their relation to current philosophical issues and debates are discussed. Students with a basic understanding of classical logic will find this book an invaluable introduction to an area that has become of central importance in both logic and philosophy. It will also interest people working in mathematics and computer science who wish to know about the area.

The Advent of the Algorithm: The 300-Year Journey from an Idea to the Computer


David Berlinski - 2000
    A basic idea that proved elusive for hundreds of years and bent the minds of the greatest thinkers in the world, the algorithm is what made the modern world possible. Without the algorithm, there would have been no computer, no Internet, no virtual reality, no e-mail, or any other technological advance that we rely on every day.In The Advent of the Algorithm, David Berlinski combines science, history, and math to explain and explore the intriguing story of how the algorithm was finally discovered by a succession of mathematicians and logicians, and how this paved the way for the digital age. Beginning with Leibniz and culminating in the middle of the twentieth century with the groundbreaking work of Gödel and Turing, The Advent of the Algorithm is an epic tale told with clarity and imaginative brilliance.

Principles of Statistics


M.G. Bulmer - 1979
    There are equally many advanced textbooks which delve into the far reaches of statistical theory, while bypassing practical applications. But between these two approaches is an unfilled gap, in which theory and practice merge at an intermediate level. Professor M. G. Bulmer's Principles of Statistics, originally published in 1965, was created to fill that need. The new, corrected Dover edition of Principles of Statistics makes this invaluable mid-level text available once again for the classroom or for self-study.Principles of Statistics was created primarily for the student of natural sciences, the social scientist, the undergraduate mathematics student, or anyone familiar with the basics of mathematical language. It assumes no previous knowledge of statistics or probability; nor is extensive mathematical knowledge necessary beyond a familiarity with the fundamentals of differential and integral calculus. (The calculus is used primarily for ease of notation; skill in the techniques of integration is not necessary in order to understand the text.)Professor Bulmer devotes the first chapters to a concise, admirably clear description of basic terminology and fundamental statistical theory: abstract concepts of probability and their applications in dice games, Mendelian heredity, etc.; definitions and examples of discrete and continuous random variables; multivariate distributions and the descriptive tools used to delineate them; expected values; etc. The book then moves quickly to more advanced levels, as Professor Bulmer describes important distributions (binomial, Poisson, exponential, normal, etc.), tests of significance, statistical inference, point estimation, regression, and correlation. Dozens of exercises and problems appear at the end of various chapters, with answers provided at the back of the book. Also included are a number of statistical tables and selected references.

The Riemann Hypothesis: The Greatest Unsolved Problem in Mathematics


Karl Sabbagh - 2002
    They speak of it in awed terms and consider it to be an even more difficult problem than Fermat's last theorem, which was finally proven by Andrew Wiles in 1995.In The Riemann Hypothesis, acclaimed author Karl Sabbagh interviews some of the world's finest mathematicians who have spent their lives working on the problem--and whose approaches to meeting the challenges thrown up by the hypothesis are as diverse as their personalities.Wryly humorous, lively, accessible and comprehensive, The Riemann Hypothesis is a compelling exploration of the people who do math and the ideas that motivate them to the brink of obsession--and a profound meditation on the ultimate meaning of mathematics.

Ada Lovelace: A Life from Beginning to End (Biographies of Women in History Book 12)


Hourly History - 2019
     Free BONUS Inside! As the sole legitimate child of Lord Byron, Ada Lovelace was the progeny of literary royalty. Many might have naturally expected her to go into the field of her father, but instead of delving into poetry, she delved into the hard sciences of mathematics and analytic thinking. Even so, Ada still had the imagination of a lyricist when writing scientific treatises, at times referring to her own work as nothing short of “poetical science.” Everything she did, she did with passion and dogged determination. It was this drive that led Ada to look farther and search deeper than her contemporaries. Her unique vision led her to become one of the pioneers of the modern computer and one of the world’s first computer programmers. But what exactly do we know about Ada Lovelace, and how can it be quantified? Read this book to find out more about the nineteenth-century mathematician and writer Augusta Ada King, Countess of Lovelace. Discover a plethora of topics such as The Daughter of Lord and Lady Byron Early Years of Paralysis The World’s First Computer Programmer Rumors and Laudanum Addiction A Grim Prognosis Last Days and Death And much more! So if you want a concise and informative book on Ada Lovelace, simply scroll up and click the "Buy now" button for instant access!

Numerical Optimization


Jorge Nocedal - 2000
    One can trace its roots to the Calculus of Variations and the work of Euler and Lagrange. This natural and reasonable approach to mathematical programming covers numerical methods for finite-dimensional optimization problems. It begins with very simple ideas progressing through more complicated concepts, concentrating on methods for both unconstrained and constrained optimization.

How to Think Like a Mathematician


Kevin Houston - 2009
    Working through the book you will develop an arsenal of techniques to help you unlock the meaning of definitions, theorems and proofs, solve problems, and write mathematics effectively. All the major methods of proof - direct method, cases, induction, contradiction and contrapositive - are featured. Concrete examples are used throughout, and you'll get plenty of practice on topics common to many courses such as divisors, Euclidean algorithms, modular arithmetic, equivalence relations, and injectivity and surjectivity of functions. The material has been tested by real students over many years so all the essentials are covered. With over 300 exercises to help you test your progress, you'll soon learn how to think like a mathematician.

Origami Design Secrets: Mathematical Methods for an Ancient Art


Robert J. Lang - 2003
    Lang, one of the worlds foremost origami artists and scientists, presents the never-before-described mathematical and geometric principles that allow anyone to design original origami, something once restricted to an elite few. From the theoretical underpinnings to detailed step-by-step folding sequences, this book takes a modern look at the centuries-old art of origami.

Introduction to Algorithms


Thomas H. Cormen - 1989
    Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor.

A Course of Pure Mathematics


G.H. Hardy - 1908
    Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.

The Calendar


David Ewing Duncan - 1998
    The year 2000 is alternatively the year 2544 (Buddhist), 6236 (Ancient Egyptian), 5761 (Jewish) or simply the Year of the Dragon (Chinese). The story of the creation of the Western calendar, which is related in this book, is a story of emperors and popes, mathematicians and monks, and the growth of scientific calculation to the point where, bizarrely, our measurement of time by atomic pulses is now more accurate than time itself: the Earth is an elderly lady and slightly eccentric - she loses half a second a century. Days have been invented (Julius Caesar needed an extra 80 days in 46BC), lost (Pope Gregory XIII ditched ten days in 1582) and moved (because Julius Caesar had 31 in his month, Augustus determined that he should have the same, so he pinched one from February).

Poetry of the Universe


Robert Osserman - 1995
    40 illustrations throughout.