Einstein's Theory of Relativity


Max Born - 1962
    This is such a book. Max Born is a Nobel Laureate (1955) and one of the world's great physicists: in this book he analyzes and interprets the theory of Einsteinian relativity. The result is undoubtedly the most lucid and insightful of all the books that have been written to explain the revolutionary theory that marked the end of the classical and the beginning of the modern era of physics.The author follows a quasi-historical method of presentation. The book begins with a review of the classical physics, covering such topics as origins of space and time measurements, geometric axioms, Ptolemaic and Copernican astronomy, concepts of equilibrium and force, laws of motion, inertia, mass, momentum and energy, Newtonian world system (absolute space and absolute time, gravitation, celestial mechanics, centrifugal forces, and absolute space), laws of optics (the corpuscular and undulatory theories, speed of light, wave theory, Doppler effect, convection of light by matter), electrodynamics (including magnetic induction, electromagnetic theory of light, electromagnetic ether, electromagnetic laws of moving bodies, electromagnetic mass, and the contraction hypothesis). Born then takes up his exposition of Einstein's special and general theories of relativity, discussing the concept of simultaneity, kinematics, Einstein's mechanics and dynamics, relativity of arbitrary motions, the principle of equivalence, the geometry of curved surfaces, and the space-time continuum, among other topics. Born then points out some predictions of the theory of relativity and its implications for cosmology, and indicates what is being sought in the unified field theory.This account steers a middle course between vague popularizations and complex scientific presentations. This is a careful discussion of principles stated in thoroughly acceptable scientific form, yet in a manner that makes it possible for the reader who has no scientific training to understand it. Only high school algebra has been used in explaining the nature of classical physics and relativity, and simple experiments and diagrams are used to illustrate each step. The layman and the beginning student in physics will find this an immensely valuable and usable introduction to relativity. This Dover 1962 edition was greatly revised and enlarged by Dr. Born.

Unknown Quantity: A Real and Imaginary History of Algebra


John Derbyshire - 2006
    As he did so masterfully in Prime Obsession, Derbyshire brings the evolution of mathematical thinking to dramatic life by focusing on the key historical players. Unknown Quantity begins in the time of Abraham and Isaac and moves from Abel's proof to the higher levels of abstraction developed by Galois through modern-day advances. Derbyshire explains how a simple turn of thought from this plus this equals this to this plus what equals this? gave birth to a whole new way of perceiving the world. With a historian's narrative authority and a beloved teacher's clarity and passion, Derbyshire leads readers on an intellectually satisfying and pleasantly challenging historical and mathematical journey.

Feynman's Lost Lecture: The Motion of Planets Around the Sun


David Goodstein - 1996
    Most know Richard Feynman for the hilarious anecdotes and exploits in his best-selling books Surely You're Joking, Mr. Feynman! and What DoYou Care What Other People Think? But not always obvious in those stories was his brilliance as a pure scientist—one of the century's greatest physicists. With this book and CD, we hear the voice of the great Feynman in all his ingenuity, insight, and acumen for argument. This breathtaking lecture—"The Motion of the Planets Around the Sun"—uses nothing more advanced than high-school geometry to explain why the planets orbit the sun elliptically rather than in perfect circles, and conclusively demonstrates the astonishing fact that has mystified and intrigued thinkers since Newton: Nature obeys mathematics. David and Judith Goodstein give us a beautifully written short memoir of life with Feynman, provide meticulous commentary on the lecture itself, and relate the exciting story of their effort to chase down one of Feynman's most original and scintillating lectures.

Introduction to Quantum Mechanics with Applications to Chemistry


Linus Pauling - 1985
    Numerous tables and figures.

Ramana Maharshi and the Path of Self-Knowledge


Arthur Osborne - 1954
    Introduced to the West by Paul Brunton, Ramana Maharshi's spirituality, simplicity, kindness and shrewdness had a great impact on many Westerners.

No bullshit guide to math and physics


Ivan Savov - 2010
    It shouldn't be like that. Learning calculus without mechanics is incredibly boring. Learning mechanics without calculus is missing the point. This textbook integrates both subjects and highlights the profound connections between them.This is the deal. Give me 350 pages of your attention, and I'll teach you everything you need to know about functions, limits, derivatives, integrals, vectors, forces, and accelerations. This book is the only math book you'll need for the first semester of undergraduate studies in science.With concise, jargon-free lessons on topics in math and physics, each section covers one concept at the level required for a first-year university course. Anyone can pick up this book and become proficient in calculus and mechanics, regardless of their mathematical background.Visit http://minireference.com for more details.

Things to Make and Do in the Fourth Dimension


Matt Parker - 2014
    This book can be cut, drawn in, folded into shapes and will even take you to the fourth dimension. So join stand-up mathematician Matt Parker on a journey through narcissistic numbers, optimal dating algorithms, at least two different kinds of infinity and more.

The Principles of Mathematics


Bertrand Russell - 1903
    Russell's classic The Principles of Mathematics sets forth his landmark thesis that mathematics and logic are identical―that what is commonly called mathematics is simply later deductions from logical premises.His ideas have had a profound influence on twentieth-century work on logic and the foundations of mathematics.

Gödel, Escher, Bach: An Eternal Golden Braid


Douglas R. Hofstadter - 1979
    However, according to Hofstadter, the formal system that underlies all mental activity transcends the system that supports it. If life can grow out of the formal chemical substrate of the cell, if consciousness can emerge out of a formal system of firing neurons, then so too will computers attain human intelligence. Gödel, Escher, Bach is a wonderful exploration of fascinating ideas at the heart of cognitive science: meaning, reduction, recursion, and much more.

Einstein's Miraculous Year


John J. Stachel - 1998
    In those twelve months, Einstein shattered many cherished scientific beliefs with five extraordinary papers that would establish him as the world's leading physicist. This book brings those papers together in an accessible format. The best-known papers are the two that founded special relativity: On the Electrodynamics of Moving Bodies and Does the Inertia of a Body Depend on Its Energy Content? In the former, Einstein showed that absolute time had to be replaced by a new absolute: the speed of light. In the second, he asserted the equivalence of mass and energy, which would lead to the famous formula E = mc2.The book also includes On a Heuristic Point of View Concerning the Production and Transformation of Light, in which Einstein challenged the wave theory of light, suggesting that light could also be regarded as a collection of particles. This helped to open the door to a whole new world--that of quantum physics. For ideas in this paper, he won the Nobel Prize in 1921.The fourth paper also led to a Nobel Prize, although for another scientist, Jean Perrin. On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat concerns the Brownian motion of such particles. With profound insight, Einstein blended ideas from kinetic theory and classical hydrodynamics to derive an equation for the mean free path of such particles as a function of the time, which Perrin confirmed experimentally. The fifth paper, A New Determination of Molecular Dimensions, was Einstein's doctoral dissertation, and remains among his most cited articles. It shows how to calculate Avogadro's number and the size of molecules.These papers, presented in a modern English translation, are essential reading for any physicist, mathematician, or astrophysicist. Far more than just a collection of scientific articles, this book presents work that is among the high points of human achievement and marks a watershed in the history of science. Coinciding with the 100th anniversary of the miraculous year, this new paperback edition includes an introduction by John Stachel, which focuses on the personal aspects of Einstein's youth that facilitated and led up to the miraculous year.

Fundamental: How quantum and particle physics explain absolutely everything (except gravity)


Tim James - 2019
    In the quantum realm, objects can be in two places at once. It's a place where time travel is not only possible, but necessary. It's a place where cause and effect can happen in reverse and observing something changes its state. From parallel universes to antimatter, quantum mechanics has revealed that when you get right down to it, the laws of nature are insane. The scientist J. B. S. Haldane once said, 'Reality is not only stranger than we imagine . . . it's stranger than we can imagine.' Never is this more true than with quantum mechanics; our best, most recent attempt to make sense of the fundamental laws of nature.Fundamental is a comprehensive beginner's guide to quantum mechanics, explaining not only the weirdness of the subject but the experiments that proved it to be true. Using a humorous and light-hearted approach, Fundamental tells the story of how the most brilliant minds in science grappled with seemingly impossible ideas and gave us everything from microchips to particle accelerators. Fundamental gives clear explanations of all the quantum phenomena known to modern science, without requiring an understanding of complex mathematics; tells the eccentric stories of the scientists who made these shattering discoveries and what they used them for; explains how quantum field theory (a topic not covered in detail by any other popular-science book) gave rise to particle physics and why the Higgs boson isn't the end of the story.

The Ultimate Medicine: Dialogues with a Realized Master


Nisargadatta Maharaj - 1996
    Sri Nisargadatta Maharaj (1897-1981) lived and taught in a small apartment in the slums of Bombay. A realized master of the Tantric Nath lineage, he supported himself and his family by selling cheap goods in a small booth on the streets outside his tenement for many years. His life exemplified the concept of absolute nonduality of being. In this volume, Maharaj shares the highest truth of nonduality in his own unique way. His teaching style is abrupt, provocative, and immensely profound, cutting to the core and wasting little effort on inessentials. His terse but potent sayings are known for their ability to trigger shifts in consciousness, just by hearing or reading them."The point is that man freed from his fetters is morality personified. Such a man therefore does not need any moralistic injunctions in order to live righteously. Free a man from his bondage and thereafter everything else will take care of itself. On the other hand, man in his unredeemed state cannot possibly live morally, no matter what moral teaching he is given. It is an intrinsic impossibility, for his very foundation is immorality. That is, he lives a lie, a basic contradiction: functioning in all his relationships as the separate entity he believes himself to be, whereas in reality no such separation exists. His every action therefore does violence to other 'selves' and other 'creatures,' which are only manifestations of the unitary consciousness. So Society had to invent some restraints in order to protect itself from its own worst excesses and thereby maintain some kind of status quo. The resulting arbitrary rules, which vary with place and time and therefore are purely relative, it calls 'morality,' and by upholding this man-invented 'idea' as the highest good–oftentimes sanctioned by religious 'revelation' and scriptures–society has provided man with one more excuse to disregard the quest for liberation or relegate it to a fairly low priority in his scheme of things."

The Great Equations: Breakthroughs in Science from Pythagoras to Heisenberg


Robert P. Crease - 2008
    Crease tells the stories behind ten of the greatest equations in human history. Was Nobel laureate Richard Feynman really joking when he called Maxwell's electromagnetic equations the most significant event of the nineteenth century? How did Newton's law of gravitation influence young revolutionaries? Why has Euler's formula been called "God's equation," and why did a mysterious ecoterrorist make it his calling card? What role do betrayal, insanity, and suicide play in the second law of thermodynamics?The Great Equations tells the stories of how these equations were discovered, revealing the personal struggles of their ingenious originators. From "1 + 1 = 2" to Heisenberg's uncertainty principle, Crease locates these equations in the panoramic sweep of Western history, showing how they are as integral to their time and place of creation as are great works of art.

The Universe and the Teacup: The Mathematics of Truth and Beauty


K.C. Cole - 1998
    In The Universe and the Teacup, K. C. Cole demystifies mathematics and shows us-with humor and wonderfully accessible stories-why math need not be frightening. Using the O. J. Simpson trial, the bell curve, and Emmy Noether, the nineteenth-century woman scientist whose work was essential for Einstein's theory of relativity, Cole helps us see that more than just being a tool, math is a key to understanding the beauty of everything from rainbows to relativity.

Underground! The Disinformation Guide to Ancient Civilizations, Astonishing Archaeology and Hidden History


Preston Peet - 2005
    In this massive compendium, editor Preston Peet brings together an all-star cast of contributors to question established wisdom about the history of the world and its civilizations. Peet and anthology contributors guide us through exciting archeological adventures and treasure hunts, ancient mysteries, lost or rediscovered technologies, and assorted "Forteana," using serious scientific studies and reports, scholarly research, and some plain old fringe material, as what is considered "fringe" today is often hard science tomorrow.Contributors include: Graham Hancock (Fingerprints of the Gods, Underworld), David Hatcher Childress (Lost Cities and Civilizations series), Colin Wilson (From Atlantis to the Sphinx), Michael Cremo (Forbidden Archeology), William Corliss (Ancient Infrastructures), Robert Schoch (Voyages of the Pyramid Builders), John Anthony West (Serpent in the Sky), Michael Arbuthnot (Team Atlantis), Erich Von Daniken (Chariots of the Gods), and many more.