Book picks similar to
The Genetical Theory of Natural Selection: A Complete Variorum Edition by Ronald A. Fisher
science
biology
evolution
genetics
The Journey of Man: A Genetic Odyssey
Spencer Wells - 2002
Every person alive today is descended from him. How did this real-life Adam wind up as the father of us all? What happened to the descendants of other men who lived at the same time? And why, if modern humans share a single prehistoric ancestor, do we come in so many sizes, shapes, and races?Examining the hidden secrets of human evolution in our genetic code, Spencer Wells reveals how developments in the revolutionary science of population genetics have made it possible to create a family tree for the whole of humanity. Replete with marvelous anecdotes and remarkable information, from the truth about the real Adam and Eve to the way differing racial types emerged, The Journey of Man is an enthralling, epic tour through the history and development of early humankind.
The Logic of Chance: The Nature and Origin of Biological Evolution
Eugene V. Koonin - 2011
The author presents many specific examples from systems and comparative genomic analysis to begin to build a new, much more detailed, complex, and realistic picture of evolution. The book examines a broad range of topics in evolutionary biology including the inadequacy of natural selection and adaptation as the only or even the main mode of evolution; the key role of horizontal gene transfer in evolution and the consequent overhaul of the Tree of Life concept; the central, underappreciated evolutionary importance of viruses; the origin of eukaryotes as a result of endosymbiosis; the concomitant origin of cells and viruses on the primordial earth; universal dependences between genomic and molecular-phenomic variables; and the evolving landscape of constraints that shape the evolution of genomes and molecular phenomes.
Brilliant Blunders: From Darwin to Einstein - Colossal Mistakes by Great Scientists That Changed Our Understanding of Life and the Universe
Mario Livio - 2013
Nobody is perfect. And that includes five of the greatest scientists in history—Charles Darwin, William Thomson (Lord Kelvin), Linus Pauling, Fred Hoyle, and Albert Einstein. But the mistakes that these great luminaries made helped advance science. Indeed, as Mario Livio explains, science thrives on error, advancing when erroneous ideas are disproven.As a young scientist, Einstein tried to conceive of a way to describe the evolution of the universe at large, based on General Relativity—his theory of space, time, and gravity. Unfortunately he fell victim to a misguided notion of aesthetic simplicity. Fred Hoyle was an eminent astrophysicist who ridiculed an emerging theory about the origin of the universe that he dismissively called “The Big Bang.” The name stuck, but Hoyle was dead wrong in his opposition.They, along with Darwin (a blunder in his theory of Natural Selection), Kelvin (a blunder in his calculation of the age of the earth), and Pauling (a blunder in his model for the structure of the DNA molecule), were brilliant men and fascinating human beings. Their blunders were a necessary part of the scientific process. Collectively they helped to dramatically further our knowledge of the evolution of life, the Earth, and the universe.
At Home in the Universe: The Search for the Laws of Self-Organization and Complexity
Stuart A. Kauffman - 1995
At its heart is the discovery of the order that lies deep within the most complex of systems, from the origin of life, to the workings of giant corporations, to the rise and fall of greatcivilizations. And more than anyone else, this revolution is the work of one man, Stuart Kauffman, a MacArthur Fellow and visionary pioneer of the new science of complexity. Now, in At Home in the Universe, Kauffman brilliantly weaves together the excitement of intellectual discovery and a fertilemix of insights to give the general reader a fascinating look at this new science--and at the forces for order that lie at the edge of chaos. We all know of instances of spontaneous order in nature--an oil droplet in water forms a sphere, snowflakes have a six-fold symmetry. What we are only now discovering, Kauffman says, is that the range of spontaneous order is enormously greater than we had supposed. Indeed, self-organization is agreat undiscovered principle of nature. But how does this spontaneous order arise? Kauffman contends that complexity itself triggers self-organization, or what he calls order for free, that if enough different molecules pass a certain threshold of complexity, they begin to self-organize into a newentity--a living cell. Kauffman uses the analogy of a thousand buttons on a rug--join two buttons randomly with thread, then another two, and so on. At first, you have isolated pairs; later, small clusters; but suddenly at around the 500th repetition, a remarkable transformation occurs--much likethe phase transition when water abruptly turns to ice--and the buttons link up in one giant network. Likewise, life may have originated when the mix of different molecules in the primordial soup passed a certain level of complexity and self-organized into living entities (if so, then life is not ahighly improbable chance event, but almost inevitable). Kauffman uses the basic insight of order for free to illuminate a staggering range of phenomena. We see how a single-celled embryo can grow to a highly complex organism with over two hundred different cell types. We learn how the science ofcomplexity extends Darwin's theory of evolution by natural selection: that self-organization, selection, and chance are the engines of the biosphere. And we gain insights into biotechnology, the stunning magic of the new frontier of genetic engineering--generating trillions of novel molecules tofind new drugs, vaccines, enzymes, biosensors, and more. Indeed, Kauffman shows that ecosystems, economic systems, and even cultural systems may all evolve according to similar general laws, that tissues and terra cotta evolve in similar ways. And finally, there is a profoundly spiritual element toKauffman's thought. If, as he argues, life were bound to arise, not as an incalculably improbable accident, but as an expected fulfillment of the natural order, then we truly are at home in the universe. Kauffman's earlier volume, The Origins of Order, written for specialists, received lavish praise. Stephen Jay Gould called it a landmark and a classic. And Nobel Laureate Philip Anderson wrote that there are few people in this world who ever ask the right questions of science, and they are theones who affect its future most profoundly. Stuart Kauffman is one of these. In At Home in the Universe, this visionary thinker takes you along as he explores new insights into the nature of life.
When Life Nearly Died: The Greatest Mass Extinction of All Time
Michael J. Benton - 2003
Far less well-known is a much greater catastrophe that took place at the end of the Permian period 251 million years ago: 90 percent of life was destroyed, including saber-toothed reptiles and their rhinoceros-sized prey on land, as well as vast numbers of fish and other species in the sea.This book documents not only what happened during this gigantic mass extinction but also the recent rekindling of the idea of catastrophism. Was the end-Permian event caused by the impact of a huge meteorite or comet, or by prolonged volcanic eruption in Siberia? The evidence has been accumulating through the 1990s and into the new millennium, and Michael Benton gives his verdict at the very end. From field camps in Greenland and Russia to the laboratory bench, When Life Nearly Died involves geologists, paleontologists, environmental modelers, geochemists, astronomers, and experts on biodiversity and conservation. Their working methods are vividly described and explained, and the current disputes are revealed. The implications of our understanding of crises in the past for the current biodiversity crisis are also presented in detail. 46 b/w illustrations.
The Beak of the Finch: A Story of Evolution in Our Time
Jonathan Weiner - 1994
For among the finches of Daphne Major, natural selection is neither rare nor slow: it is taking place by the hour, and we can watch.In this dramatic story of groundbreaking scientific research, Jonathan Weiner follows these scientists as they watch Darwin's finches and come up with a new understanding of life itself. The Beak of the Finch is an elegantly written and compelling masterpiece of theory and explication in the tradition of Stephen Jay Gould.With a new preface.
The Feynman Lectures on Physics
Richard P. Feynman - 1964
A new foreword by Kip Thorne, the current Richard Feynman Professor of Theoretical Physics at Caltech, discusses the relevance of the new edition to today's readers. This boxed set also includes Feynman's new Tips on Physics—the four previously unpublished lectures that Feynman gave to students preparing for exams at the end of his course. Thus, this 4-volume set is the complete and definitive edition of The Feynman Lectures on Physics. Packaged in a specially designed slipcase, this 4-volume set provides the ultimate legacy of Feynman's extraordinary contribution to students, teachers, researches, and lay readers around the world.
This Idea Is Brilliant: Lost, Overlooked, and Underappreciated Scientific Concepts Everyone Should Know
John Brockman - 2018
In that spirit, Edge.org publisher and author of Know This, John Brockman, asks 206 of the world’s most brilliant minds the 2017 Edge Question: What scientific term or concept ought to be more widely known?Contributors include: author of The God Delusion RICHARD DAWKINS on using animals’ “Genetic Book of the Dead” to reconstruct ecological history; MacArthur Fellow REBECCA NEWBERGER GOLDSTEIN on “scientific realism,” the idea that scientific theories explain phenomena beyond what we can see and touch; author of Seven Brief Lessons on Physics CARLO ROVELLI on “relative information,” which governs the physical world around us; theoretical physicist LAWRENCE M. KRAUSS on the hidden blessings of “uncertainty”; cognitive scientist and author of The Language Instinct STEVEN PINKER on “The Second Law of Thermodynamics”; biogerontologist AUBREY DE GREY on why “maladaptive traits” have been conserved evolutionarily; musician BRIAN ENO on “confirmation bias” in the internet age; Man Booker-winning author of Atonement IAN MCEWAN on the “Navier-Stokes Equations,” which govern everything from weather prediction to aircraft design and blood flow; plus pieces from RICHARD THALER, JARED DIAMOND, NICHOLAS CARR, JANNA LEVIN, LISA RANDALL, KEVIN KELLY, DANIEL COLEMAN, FRANK WILCZEK, RORY SUTHERLAND, NINA JABLONSKI, MARTIN REES, ALISON GOPNIK, and many, many others.
Dragons of Eden: Speculations on the Evolution of Human Intelligence
Carl Sagan - 1977
Dr Carl Sagan takes us on a great reading adventure, offering his vivid and startling insights into the brains of humans & beasts, the origin of human intelligence, the function of our most haunting legends and their amazing links to recent discoveries.
Genes, Peoples, and Languages
Luigi Luca Cavalli-Sforza - 1996
Cavalli-Sforza and others have answered this question—anticipated by Darwin—with a decisive yes. Genes, Peoples, and Languages comprises five lectures that serve as a summation of the author's work over several decades, the goal of which has been nothing less than tracking the past hundred thousand years of human evolution.Cavalli-Sforza raises questions that have serious political, social, and scientific import: When and where did we evolve? How have human societies spread across the continents? How have cultural innovations affected the growth and spread of populations? What is the connection between genes and languages? Always provocative and often astonishing, Cavalli-Sforza explains why there is no genetic basis for racial classification.
The Naked Ape
Desmond Morris - 1967
Here is the Naked Ape at his most primal in love, at work, at war. Meet man as he really is: relative to the apes, stripped of his veneer as we see him courting, making love, sleeping, socializing, grooming, playing. The Naked Ape takes its place alongside Darwin’s Origin of the Species, presenting man not as a fallen angel, but as a risen ape, remarkable in his resilience, energy and imagination, yet an animal nonetheless, in danger of forgetting his origins. With its penetrating insights on man's beginnings, sex life, habits and our astonishing bonds to the animal kingdom, The Naked Ape is a landmark, at once provocative, compelling and timeless.
The Double Helix
James D. Watson - 1968
At the time, Watson was only 24, a young scientist hungry to make his mark. His uncompromisingly honest account of the heady days of their thrilling sprint against other world-class researchers to solve one of science's greatest mysteries gives a dazzlingly clear picture of a world of brilliant scientists with great gifts, very human ambitions & bitter rivalries. With humility unspoiled by false modesty, Watson relates his & Crick's desperate efforts to beat Linus Pauling to the Holy Grail of life sciences, the identification of the basic building block of life. Never has a scientist been so truthful in capturing in words the flavor of his work.
Dawkins vs Gould: Survival of the Fittest
Kim Sterelny - 2001
Science has seen its fair share of punch-ups over the years, but one debate, in the field of biology, has become notorious for its intensity. Over the last twenty years, Richard Dawkins and Stephen Jay Gould have engaged in a savage battle over evolution, which continues to rage even after Gould's death in 2002. Kim Sterelny moves beyond caricature to expose the real differences between the conceptions of evolution of these two leading scientists. He shows that the conflict extends beyond evolution to their very beliefs in science itself; and, in Gould?s case, to domains in which science plays no role at all.
Herding Hemingway's Cats: Understanding how our genes work
Kat Arney - 2016
We know they make your eyes blue, your hair curly or your nose straight. The media tells us that our genes control the risk of cancer, heart disease, alcoholism or Alzheimer's. The cost of DNA sequencing has plummeted from billions of pounds to a few hundred, and gene-based advances in medicine hold huge promise.So we've all heard of genes, but how do they actually work?According to legend, Ernest Hemingway was once given a six-toed cat by an old sea captain, and her distinctive descendants still roam the writer's Florida estate today. Scientists now know that the fault driving this profusion of digits lies in a tiny genetic control switch, miles away (in molecular terms) from the gene that 'makes' toes. And it's the same mistake that gives rise to multi-toed humans too.There are 2.2 metres of DNA inside every one of your cells, encoding roughly 20,000 genes. These are the 'recipes' that tell our cells how to make the building blocks of life, along with myriad control switches ensuring they're turned on and off at the right time and in the right place. But rather than a static string of genetic code, this is a dynamic, writhing biological library. And figuring out how it all works – how your genes make you, you – is a major challenge for researchers around the world.Drawing on stories ranging from six-toed cats and stickleback hips to wobbly worms and zombie genes, geneticist Kat Arney explores the how our genes work, creating a companion reader to the book of life itself.