Book picks similar to
Arnold's Problems by Vladimir I. Arnold
math
mathematics
reference
want-read
The Number Sense: How the Mind Creates Mathematics
Stanislas Dehaene - 1996
Describing experiments that show that human infants have a rudimentary number sense, Stanislas Dehaene suggests that this sense is as basic as our perception of color, and that it is wired into the brain. Dehaene shows that it was the invention of symbolic systems of numerals that started us on the climb to higher mathematics. A fascinating look at the crossroads where numbers and neurons intersect, The Number Sense offers an intriguing tour of how the structure of the brain shapes our mathematical abilities, and how our mathematics opens up a window on the human mind.
Real Analysis
H.L. Royden - 1963
Dealing with measure theory and Lebesque integration, this is an introductory graduate text.
How to Ace Calculus: The Streetwise Guide
Colin Conrad Adams - 1998
Capturing the tone of students exchanging ideas among themselves, this unique guide also explains how calculus is taught, how to get the best teachers, what to study, and what is likely to be on exams—all the tricks of the trade that will make learning the material of first-semester calculus a piece of cake. Funny, irreverent, and flexible, How to Ace Calculus shows why learning calculus can be not only a mind-expanding experience but also fantastic fun.
Mathematical Circles: Russian Experience (Mathematical World, Vol. 7)
Dmitri Fomin - 1996
The work is predicated on the idea that studying mathematics can generate the same enthusiasm as playing a team sport - without necessarily being competitive.
Pure Mathematics 1: Advanced Level Mathematics
Hugh Neill - 2002
Pure Mathematics 1 corresponds to unit P1. It covers quadratics, functions, coordinate geometry, circular measure, trigonometry, vectors, series, differentiation and integration.
Mathematical Methods for Physicists
George B. Arfken - 1970
This work includes differential forms and the elegant forms of Maxwell's equations, and a chapter on probability and statistics. It also illustrates and proves mathematical relations.
Mathematical Analysis
S.C. Malik - 1992
This book discusses real sequences and series, continuity, functions of several variables, elementary and implicit functions, Riemann and Riemann-Stieltjes integrals, and Lebesgue integrals.
Computational Complexity
Christos H. Papadimitriou - 1993
It offers a comprehensive and accessible treatment of the theory of algorithms and complexity—the elegant body of concepts and methods developed by computer scientists over the past 30 years for studying the performance and limitations of computer algorithms. The book is self-contained in that it develops all necessary mathematical prerequisites from such diverse fields such as computability, logic, number theory and probability.
Symmetry
Hermann Weyl - 1952
Hermann Weyl explores the concept of symmetry beginning with the idea that it represents a harmony of proportions, and gradually departs to examine its more abstract varieties and manifestations--as bilateral, translatory, rotational, ornamental, and crystallographic. Weyl investigates the general abstract mathematical idea underlying all these special forms, using a wealth of illustrations as support. Symmetry is a work of seminal relevance that explores the great variety of applications and importance of symmetry.
Elementary Differential Equations
Earl D. Rainville - 1962
Each chapter includes many illustrative examples to assist the reader. The book emphasizes methods for finding solutions to differential equations. It provides many abundant exercises, applications, and solved examples with careful attention given to readability. Elementary Differential Equations includes a thorough treatment of power series techniques. In addition, the book presents a classical treatment of several physical problems to show how Fourier series become involved in the solution of those problems. The eighth edition of Elementary Differential Equations has been revised to include a new supplement in many chapters that provides suggestions and exercises for using a computer to assist in the understanding of the material in the chapter. It also now provides an introduction to the phase plane and to different types of phase portraits. A valuable reference book for readers interested in exploring the technological and other applications of differential equations.
100 Essential Things You Didn't Know You Didn't Know
John D. Barrow - 2008
This hugely informative and wonderfully entertaining little book answers one hundred essential questions about existence. It unravels the knotty, clarifies the conundrums and sheds light into dark corners. From winning the lottery, placing bets at the races and escaping from bears to sports, Shakespeare, Google, game theory, drunks, divorce settlements and dodgy accounting; from chaos to infinity and everything in between, 100 Essential Things You Didn't Know You Didn't Know has all the answers!
50 Mathematical Ideas You Really Need to Know
Tony Crilly - 2007
Who invented zero? Why are there 60 seconds in a minute? Can a butterfly's wings really cause a storm on the far side of the world? In 50 concise essays, Professor Tony Crilly explains the mathematical concepts that allow use to understand and shape the world around us.
The Theoretical Minimum: What You Need to Know to Start Doing Physics
Leonard Susskind - 2013
In this unconventional introduction, physicist Leonard Susskind and hacker-scientist George Hrabovsky offer a first course in physics and associated math for the ardent amateur. Unlike most popular physics books—which give readers a taste of what physicists know but shy away from equations or math—Susskind and Hrabovsky actually teach the skills you need to do physics, beginning with classical mechanics, yourself. Based on Susskind's enormously popular Stanford University-based (and YouTube-featured) continuing-education course, the authors cover the minimum—the theoretical minimum of the title—that readers need to master to study more advanced topics.An alternative to the conventional go-to-college method, The Theoretical Minimum provides a tool kit for amateur scientists to learn physics at their own pace.
Group Theory in the Bedroom, and Other Mathematical Diversions
Brian Hayes - 2008
(The also-rans that year included Tom Wolfe, Verlyn Klinkenborg, and Oliver Sacks.) Hayes's work in this genre has also appeared in such anthologies as The Best American Magazine Writing, The Best American Science and Nature Writing, and The Norton Reader. Here he offers us a selection of his most memorable and accessible pieces--including "Clock of Ages"--embellishing them with an overall, scene-setting preface, reconfigured illustrations, and a refreshingly self-critical "Afterthoughts" section appended to each essay.