The Particle at the End of the Universe: How the Hunt for the Higgs Boson Leads Us to the Edge of a New World


Sean Carroll - 2012
    It had to be found. But projects as big as CERN’s Large Hadron Collider don’t happen without incredible risks – and occasional skullduggery. In the definitive account of this landmark event, Caltech physicist and acclaimed science writer Sean Carroll reveals the insights, rivalry, and wonder that fuelled the Higgs discovery, and takes us on a riveting and irresistible ride to the very edge of physics today.

Quantum: Einstein, Bohr and the Great Debate About the Nature of Reality


Manjit Kumar - 2007
    And yet for many years it was equally baffling for scientists themselves. Manjit Kumar gives a dramatic and superbly-written history of this fundamental scientific revolution, and the divisive debate at its heart.For 60 years most physicists believed that quantum theory denied the very existence of reality itself. Yet Kumar shows how the golden age of physics ignited the greatest intellectual debate of the twentieth century.Quantum sets the science in the context of the great upheavals of the modern age. In 1925 the quantum pioneers nearly all hailed from upper-middle-class academic families; most were German; and their average age was 24. But it was their irrational, romantic spirit, formed in reaction to the mechanised slaughter of the First World War that inspired their will to test science to its limits.The essential read for anyone fascinated by this complex and thrilling story and by the band of young men at its heart.

The Hidden Reality: Parallel Universes and the Deep Laws of the Cosmos


Brian Greene - 2011
    Everything. Yet, in recent years discoveries in physics and cosmology have led a number of scientists to conclude that our universe may be one among many. With crystal-clear prose and inspired use of analogy, Brian Greene shows how a range of different “multiverse” proposals emerges from theories developed to explain the most refined observations of both subatomic particles and the dark depths of space: a multiverse in which you have an infinite number of doppelgängers, each reading this sentence in a distant universe; a multiverse comprising a vast ocean of bubble universes, of which ours is but one; a multiverse that endlessly cycles through time, or one that might be hovering millimeters away yet remains invisible; another in which every possibility allowed by quantum physics is brought to life. Or, perhaps strangest of all, a multiverse made purely of math.Greene, one of our foremost physicists and science writers, takes us on a captivating exploration of these parallel worlds and reveals how much of reality’s true nature may be deeply hidden within them. And, with his unrivaled ability to make the most challenging of material accessible and entertaining, Greene tackles the core question: How can fundamental science progress if great swaths of reality lie beyond our reach?Sparked by Greene’s trademark wit and precision, The Hidden Reality is at once a far-reaching survey of cutting-edge physics and a remarkable journey to the very edge of reality—a journey grounded firmly in science and limited only by our imagination.

Hyperspace: A Scientific Odyssey Through Parallel Universes, Time Warps, and the Tenth Dimension


Michio Kaku - 1994
    Indeed, many physicists today believe that there are other dimensions beyond the four of our space-time, and that a unified vision of the various forces of nature can be achieved, if we consider that everything we see around us, from the trees to the stars are nothing but vibrations in hyperspace. Hyperspace theory - and its more recent derivation, superstring theory - is the eye of this revolution. In this book, Michio Kaku shows us a fascinating panorama, which completely changes our view of the cosmos, and takes us on a dazzling journey through new dimensions: wormholes connecting parallel universes, time machines, "baby universes" and more. Similar wonders are emerging in some pages in which everything is explained with elegant simplicity and where the mathematical formulation is replaced by imaginative illustrations that allow the problems to be visualized. The result is a very entertaining and surprising book, which even leaves behind the greatest fantasies of the old science fiction authors.

In Search of Schrödinger's Cat: Quantum Physics and Reality


John Gribbin - 1984
    It is so important that it provides the fundamental underpinning of all modern sciences. Without it, we'd have no nuclear power or nuclear bombs, no lasers, no TV, no computers, no science of molecular biology, no understanding of DNA, no genetic engineering—at all. John Gribbin tells the complete story of quantum mechanics, a truth far stranger than any fiction. He takes us step-by-step into an ever more bizarre and fascinating place—requiring only that we approach it with an open mind. He introduces the scientists who developed quantum theory. He investigates the atom, radiation, time travel, the birth of the universe, superconductors and life itself. And in a world full of its own delights, mysteries and surprises, he searches for Schrödinger's Cat—a search for quantum reality—as he brings every reader to a clear understanding of the most important area of scientific study today—quantum physics.

Life on the Edge: The Coming of Age of Quantum Biology


Johnjoe McFadden - 2014
    Life remains the only way to make life. Are we still missing a vital ingredient in its creation?      Like Richard Dawkins' The Selfish Gene, which provided a new perspective on how evolution works, Life on the Edge alters our understanding of our world's fundamental dynamics. Bringing together first-hand experience at the cutting edge of science with unparalleled gifts of explanation, Jim Al-Khalili and Johnjoe Macfadden reveal that missing ingredient to be quantum mechanics; the phenomena that lie at the heart of this most mysterious of sciences. Drawing on recent ground-breaking experiments around the world, each chapter in Life on the Edge engages by illustrating one of life's puzzles: How do migrating birds know where to go? How do we really smell the scent of a rose? How do our genes copy themselves with such precision? Life on the Edge accessibly reveals how quantum mechanics can answer these probing questions of the universe. Guiding the reader through the rapidly unfolding discoveries of the last few years, Al-Khalili and McFadden communicate the excitement of the explosive new field of quantum biology and its potentially revolutionary applications, while offering insights into the biggest puzzle of all: what is life? As they brilliantly demonstrate in these groundbreaking pages, life exists on the quantum edge.

The Trouble with Physics: The Rise of String Theory, the Fall of a Science and What Comes Next


Lee Smolin - 2006
    For more than two centuries, our understanding of the laws of nature expanded rapidly. But today, despite our best efforts, we know nothing more about these laws than we knew in the 1970s. Why is physics suddenly in trouble? And what can we do about it?One of the major problems, according to Smolin, is string theory: an ambitious attempt to formulate a “theory of everything” that explains all the particles and forces of nature and how the universe came to be. With its exotic new particles and parallel universes, string theory has captured the public’s imagination and seduced many physicists.But as Smolin reveals, there’s a deep flaw in the theory: no part of it has been tested, and no one knows how to test it. In fact, the theory appears to come in an infinite number of versions, meaning that no experiment will ever be able to prove it false. As a scientific theory, it fails. And because it has soaked up the lion’s share of funding, attracted some of the best minds, and effectively penalized young physicists for pursuing other avenues, it is dragging the rest of physics down with it.With clarity, passion, and authority, Smolin charts the rise and fall of string theory and takes a fascinating look at what will replace it. A group of young theorists has begun to develop exciting ideas that, unlike string theory, are testable. Smolin not only tells us who and what to watch for in the coming years, he offers novel solutions for seeking out and nurturing the best new talent—giving us a chance, at long last, of finding the next Einstein.

Our Mathematical Universe: My Quest for the Ultimate Nature of Reality


Max Tegmark - 2012
    Our Big Bang, our distant future, parallel worlds, the sub-atomic and intergalactic - none of them are what they seem. But there is a way to understand this immense strangeness - mathematics. Seeking an answer to the fundamental puzzle of why our universe seems so mathematical, Tegmark proposes a radical idea: that our physical world not only is described by mathematics, but that it is mathematics. This may offer answers to our deepest questions: How large is reality? What is everything made of? Why is our universe the way it is?Table of ContentsPreface 1 What Is Reality? Not What It Seems • What’s the Ultimate Question? • The Journey Begins Part One: Zooming Out 2 Our Place in Space Cosmic Questions • How Big Is Space? • The Size of Earth • Distance to the Moon • Distance to the Sun and the Planets • Distance to the Stars • Distance to the Galaxies • What Is Space? 3 Our Place in TimeWhere Did Our Solar System Come From? • Where Did theGalaxies Come From? • Where Did the Mysterious MicrowavesCome From? • Where Did the Atoms Come From? 4 Our Universe by NumbersWanted: Precision Cosmology • Precision Microwave-Background Fluctuations • Precision Galaxy Clustering • The Ultimate Map of Our Universe • Where Did Our Big Bang Come From? 5 Our Cosmic Origins What’s Wrong with Our Big Bang? • How Inflation Works • The Gift That Keeps on Giving • Eternal Inflation 6 Welcome to the Multiverse The Level I Multiverse • The Level II Multiverse • Multiverse Halftime Roundup Part Two: Zooming In 7 Cosmic Legos Atomic Legos • Nuclear Legos • Particle-Physics Legos • Mathematical Legos • Photon Legos • Above the Law? • Quanta and Rainbows • Making Waves • Quantum Weirdness • The Collapse of Consensus • The Weirdness Can’t Be Confined • Quantum Confusion 8 The Level III Multiverse The Level III Multiverse • The Illusion of Randomness • Quantum Censorship • The Joys of Getting Scooped • Why Your Brain Isn’t a Quantum Computer • Subject, Object and Environment • Quantum Suicide • Quantum Immortality? • Multiverses Unified • Shifting Views: Many Worlds or Many Words? Part Three: Stepping Back 9 Internal Reality, External Reality and Consensus Reality External Reality and Internal Reality • The Truth, the Whole Truth and Nothing but the Truth • Consensus Reality • Physics: Linking External to Consensus Reality 10 Physical Reality and Mathematical Reality Math, Math Everywhere! • The Mathematical Universe Hypothesis • What Is a Mathematical Structure? 11 Is Time an Illusion? How Can Physical Reality Be Mathematical? • What Are You? • Where Are You? (And What Do You Perceive?) • When Are You? 12 The Level IV Multiverse Why I Believe in the Level IV Multiverse • Exploring the Level IV Multiverse: What’s Out There? • Implications of the Level IV Multiverse • Are We Living in a Simulation? • Relation Between the MUH, the Level IV Multiverse and Other Hypotheses •Testing the Level IV Multiverse 13 Life, Our Universe and Everything How Big Is Our Physical Reality? • The Future of Physics • The Future of Our Universe—How Will It End? • The Future of Life •The Future of You—Are You Insignificant? Acknowledgments Suggestions for Further Reading Index

We Have No Idea: A Guide to the Unknown Universe


Jorge Cham - 2017
    While they're at it, they helpfully demystify many complicated things we do know about, from quarks and neutrinos to gravitational waves and exploding black holes. With equal doses of humor and delight, they invite us to see the universe as a vast expanse of mostly uncharted territory that's still ours to explore.This entertaining illustrated science primer is the perfect book for anyone who's curious about all the big questions physicists are still trying to answer.

Quantum Theory Cannot Hurt You


Marcus Chown - 2005
    Together, they explain virtually everything about the world we live in. But, almost a century after their advent, most people haven't the slightest clue what either is about. Did you know that there's so much empty space inside matter that the entire human race could be squeezed into the volume of a sugar cube? Or that you grow old more quickly on the top floor of a building than on the ground floor? And did you realise that 1 percent of the static on a TV tuned between stations is a relic of the Big Bang?

When Einstein Walked with Gödel: Excursions to the Edge of Thought


Jim Holt - 2018
    With his trademark clarity and humor, Holt probes the mysteries of quantum mechanics, the quest for the foundations of mathematics, and the nature of logic and truth. Along the way, he offers intimate biographical sketches of celebrated and neglected thinkers, from the physicist Emmy Noether to the computing pioneer Alan Turing and the discoverer of fractals, Benoit Mandelbrot. Holt offers a painless and playful introduction to many of our most beautiful but least understood ideas, from Einsteinian relativity to string theory, and also invites us to consider why the greatest logician of the twentieth century believed the U.S. Constitution contained a terrible contradiction--and whether the universe truly has a future.

Cosmos


Carl Sagan - 1980
    In the book, Sagan explores 15 billion years of cosmic evolution and the development of science and civilization. Cosmos traces the origins of knowledge and the scientific method, mixing science and philosophy, and speculates to the future of science. The book also discusses the underlying premises of science by providing biographical anecdotes about many prominent scientists throughout history, placing their contributions into the broader context of the development of modern science.The book covers a broad range of topics, comprising Sagan's reflections on anthropological, cosmological, biological, historical, and astronomical matters from antiquity to contemporary times. Sagan reiterates his position on extraterrestrial life—that the magnitude of the universe permits the existence of thousands of alien civilizations, but no credible evidence exists to demonstrate that such life has ever visited earth.

The Quantum Universe: Everything That Can Happen Does Happen


Brian Cox - 2011
    Cox and Forshaw's contention? There is no need for quantum mechanics to be viewed this way. There is a lot of mileage in the 'weirdness' of the quantum world, and it often leads to confusion and, frankly, bad science. The Quantum Universe cuts through the Wu Li and asks what observations of the natural world made it necessary, how it was constructed, and why we are confident that, for all its apparent strangeness, it is a good theory.The quantum mechanics of The Quantum Universe provide a concrete model of nature that is comparable in its essence to Newton’s laws of motion, Maxwell’s theory of electricity and magnetism, and Einstein’s theory of relativity.

QED: The Strange Theory of Light and Matter


Richard P. Feynman - 1985
    QED--the edited version of four lectures on quantum electrodynamics that Feynman gave to the general public at UCLA as part of the Alix G. Mautner Memorial Lecture series--is perhaps the best example of his ability to communicate both the substance and the spirit of science to the layperson.The focus, as the title suggests, is quantum electrodynamics (QED), the part of the quantum theory of fields that describes the interactions of the quanta of the electromagnetic field-light, X rays, gamma rays--with matter and those of charged particles with one another. By extending the formalism developed by Dirac in 1933, which related quantum and classical descriptions of the motion of particles, Feynman revolutionized the quantum mechanical understanding of the nature of particles and waves. And, by incorporating his own readily visualizable formulation of quantum mechanics, Feynman created a diagrammatic version of QED that made calculations much simpler and also provided visual insights into the mechanisms of quantum electrodynamic processes.In this book, using everyday language, spatial concepts, visualizations, and his renowned "Feynman diagrams" instead of advanced mathematics, Feynman successfully provides a definitive introduction to QED for a lay readership without any distortion of the basic science. Characterized by Feynman's famously original clarity and humor, this popular book on QED has not been equaled since its publication.

Death by Black Hole: And Other Cosmic Quandaries


Neil deGrasse Tyson - 2006
    "One of today's best popularizers of science." —Kirkus Reviews.Loyal readers of the monthly "Universe" essays in Natural History magazine have long recognized Neil deGrasse Tyson's talent for guiding them through the mysteries of the cosmos with stunning clarity and almost childlike enthusiasm. Here, Tyson compiles his favorite essays across a myriad of cosmic topics. The title essay introduces readers to the physics of black holes by explaining the gory details of what would happen to your body if you fell into one. "Holy Wars" examines the needless friction between science and religion in the context of historical conflicts. "The Search for Life in the Universe" explores astral life from the frontiers of astrobiology. And "Hollywood Nights" assails the movie industry's feeble efforts to get its night skies right. Known for his ability to blend content, accessibility, and humor, Tyson is a natural teacher who simplifies some of the most complex concepts in astrophysics while simultaneously sharing his infectious excitement about our universe.