Who Is Fourier? a Mathematical Adventure


Transnational College of Lex - 1995
    This is done in a way that is not only easy to understand, but is actually fun! Professors and engineers, with high school and college students following closely, comprise the largest percentage of our readers. It is a must-have for anyone interested in music, mathematics, physics, engineering, or complex science. Dr. Yoichiro Nambu, 2008 Nobel Prize Winner in Physics, served as a senior adviser to the English version of Who is Fourier? A Mathematical Adventure.

The Poincaré Conjecture: In Search of the Shape of the Universe


Donal O'Shea - 2007
    He revolutionized the field of topology, which studies properties of geometric configurations that are unchanged by stretching or twisting. The Poincare conjecture lies at the heart of modern geometry and topology, and even pertains to the possible shape of the universe. The conjecture states that there is only one shape possible for a finite universe in which every loop can be contracted to a single point.Poincare's conjecture is one of the seven "millennium problems" that bring a one-million-dollar award for a solution. Grigory Perelman, a Russian mathematician, has offered a proof that is likely to win the Fields Medal, the mathematical equivalent of a Nobel prize, in August 2006. He also will almost certainly share a Clay Institute millennium award.In telling the vibrant story of The Poincare Conjecture, Donal O'Shea makes accessible to general readers for the first time the meaning of the conjecture, and brings alive the field of mathematics and the achievements of generations of mathematicians whose work have led to Perelman's proof of this famous conjecture.

The Riddle of Scheherazade: And Other Amazing Puzzles


Raymond M. Smullyan - 1997
    “The most entertaining logician and set theorist who ever lived” (Martin Gardner) gives us an encore to The Lady or the Tiger?-a fiendishly clever, utterly captivating new collection of 225 brainteasers, puzzles, and paradoxes.

A Mind at Play: How Claude Shannon Invented the Information Age


Jimmy Soni - 2017
    He constructed a fleet of customized unicycles and a flamethrowing trumpet, outfoxed Vegas casinos, and built juggling robots. He also wrote the seminal text of the digital revolution, which has been called “the Magna Carta of the Information Age.” His discoveries would lead contemporaries to compare him to Albert Einstein and Isaac Newton. His work anticipated by decades the world we’d be living in today—and gave mathematicians and engineers the tools to bring that world to pass.In this elegantly written, exhaustively researched biography, Jimmy Soni and Rob Goodman reveal Claude Shannon’s full story for the first time. It’s the story of a small-town Michigan boy whose career stretched from the era of room-sized computers powered by gears and string to the age of Apple. It’s the story of the origins of our digital world in the tunnels of MIT and the “idea factory” of Bell Labs, in the “scientists’ war” with Nazi Germany, and in the work of Shannon’s collaborators and rivals, thinkers like Alan Turing, John von Neumann, Vannevar Bush, and Norbert Wiener.And it’s the story of Shannon’s life as an often reclusive, always playful genius. With access to Shannon’s family and friends, A Mind at Play brings this singular innovator and creative genius to life.

The Nothing That Is: A Natural History of Zero


Robert M. Kaplan - 1999
    As we enter the year 2000, zero is once again making its presence felt. Nothing itself, it makes possible a myriad of calculations. Indeed, without zero mathematicsas we know it would not exist. And without mathematics our understanding of the universe would be vastly impoverished. But where did this nothing, this hollow circle, come from? Who created it? And what, exactly, does it mean? Robert Kaplan's The Nothing That Is: A Natural History of Zero begins as a mystery story, taking us back to Sumerian times, and then to Greece and India, piecing together the way the idea of a symbol for nothing evolved. Kaplan shows us just how handicapped our ancestors were in trying to figurelarge sums without the aid of the zero. (Try multiplying CLXIV by XXIV). Remarkably, even the Greeks, mathematically brilliant as they were, didn't have a zero--or did they? We follow the trail to the East where, a millennium or two ago, Indian mathematicians took another crucial step. By treatingzero for the first time like any other number, instead of a unique symbol, they allowed huge new leaps forward in computation, and also in our understanding of how mathematics itself works. In the Middle Ages, this mathematical knowledge swept across western Europe via Arab traders. At first it was called dangerous Saracen magic and considered the Devil's work, but it wasn't long before merchants and bankers saw how handy this magic was, and used it to develop tools likedouble-entry bookkeeping. Zero quickly became an essential part of increasingly sophisticated equations, and with the invention of calculus, one could say it was a linchpin of the scientific revolution. And now even deeper layers of this thing that is nothing are coming to light: our computers speakonly in zeros and ones, and modern mathematics shows that zero alone can be made to generate everything.Robert Kaplan serves up all this history with immense zest and humor; his writing is full of anecdotes and asides, and quotations from Shakespeare to Wallace Stevens extend the book's context far beyond the scope of scientific specialists. For Kaplan, the history of zero is a lens for looking notonly into the evolution of mathematics but into very nature of human thought. He points out how the history of mathematics is a process of recursive abstraction: how once a symbol is created to represent an idea, that symbol itself gives rise to new operations that in turn lead to new ideas. Thebeauty of mathematics is that even though we invent it, we seem to be discovering something that already exists.The joy of that discovery shines from Kaplan's pages, as he ranges from Archimedes to Einstein, making fascinating connections between mathematical insights from every age and culture. A tour de force of science history, The Nothing That Is takes us through the hollow circle that leads to infinity.

Total Baseball: The Ultimate Baseball Encyclopedia


John Thorn - 1989
    the eighth edition of Total Baseball: the ultimate baseball encyclopedia is the most striking, compelling and comprehensive single volume ever devoted to America's pastime.

New SYLLABUS Mathematics 3; 6th Edition


Teh Keng Seng
    

Introducing Fractals: A Graphic Guide


Nigel Lesmoir-Gordon - 1996
    It's about the broken, wrinkled, wiggly world - the uneven shapes of nature, unlike the idealized forms of Euclidean geometry. We see fractals everywhere; indeed we are fractal! Fractal Geometry is an extension of classical geometry. Using computers, it can make precise models of physical structures - from ferns to galaxies. Fractal geometry is a new language. Once you speak it, you can describe the shape of cloud as precisely as an architect can describe a house.

Partial Differential Equations


Lawrence C. Evans - 1998
    

Advanced Engineering Mathematics


K.A. Stroud - 2003
    You proceed at your own rate and any difficulties you may encounter are resolved before you move on to the next topic. With a step-by-step programmed approach that is complemented by hundreds of worked examples and exercises, Advanced Engineering Mathematics is ideal as an on-the-job reference for professionals or as a self-study guide for students.Uses a unique technique-oriented approach that takes the reader through each topic step-by-step.Features a wealth of worked examples and progressively more challenging exercises.Contains Test Exercises, Learning Outcomes, Further Problems, and Can You? Checklists to guide and enhance learning and comprehension.Expanded coverage includes new chapters on Z Transforms, Fourier Transforms, Numerical Solutions of Partial Differential Equations, and more Complex Numbers.Includes a new chapter, Introduction to Invariant Linear Systems, and new material on difference equations integrated into the Z transforms chapter.

Introduction to Topology


Bert Mendelson - 1975
    It provides a simple, thorough survey of elementary topics, starting with set theory and advancing to metric and topological spaces, connectedness, and compactness. 1975 edition.

The Dot and the Line: A Romance in Lower Mathematics


Norton Juster - 1963
    But the dot, though perfect in every way, only had eyes for a wild and unkempt squiggle. All of the line's romantic dreams were in vain, until he discovered...angles! Now, with newfound self-expression, he can be anything he wants to be--a square, a triangle, a parallelogram....And that's just the beginning!First published in 1963 and made into an Academy Award-winning animated short film, here is a supremely witty love story with a twist that reveals profound truths about relationships--both human and mathematical--sure to tickle lovers of all ages.

The Golden Section: Nature’s Greatest Secret


Scott Olsen - 2006
    The Golden Section—otherwise known as phi, the golden mean, or the golden ratio—is one of the most elegant and beautiful rations in the universe.Defined as a line segment divided into two unequal parts, such that the ratio of the shorter portion to the longer portion is the same as the ratio of the longer portion to the whole, it pops up throughout nature—in water, DNA, the proportions of fish and butterflies, and the number of teeth we possess—as well as in art and architecture, music, philosophy, science, and mathematics.Beautifully illustrated, The Golden Section tells the story of this remarkable construct and its wide-ranging impact on civilization and the natural world.

Poincare's Prize: The Hundred-Year Quest to Solve One of Math's Greatest Puzzles


George G. Szpiro - 2007
    Amazingly, the story unveiled in it is true.In the world of math, the Poincaré Conjecture was a holy grail. Decade after decade the theorem that informs how we understand the shape of the universe defied every effort to prove it. Now, after more than a century, an eccentric Russian recluse has found the solution to one of the seven greatest math problems of our time, earning the right to claim the first one-million-dollar Millennium math prize.George Szpiro begins his masterfully told story in 1904 when Frenchman Henri Poincaré formulated a conjecture about a seemingly simple problem. Imagine an ant crawling around on a large surface. How would it know whether the surface is a flat plane, a round sphere, or a bagel- shaped object? The ant would need to lift off into space to observe the object. How could you prove the shape was spherical without actually seeing it? Simply, this is what Poincaré sought to solve.In fact, Poincaré thought he had solved it back at the turn of the twentieth century, but soon realized his mistake. After four more years' work, he gave up. Across the generations from China to Texas, great minds stalked the solution in the wilds of higher dimensions. Among them was Grigory Perelman, a mysterious Russian who seems to have stepped out of a Dostoyevsky novel. Living in near poverty with his mother, he has refused all prizes and academic appointments, and rarely talks to anyone, including fellow mathematicians. It seemed he had lost the race in 2002, when the conjecture was widely but, again, falsely reported as solved. A year later, Perelman dropped three papers onto the Internet that not only proved the Poincaré Conjecture but enlightened the universe of higher dimensions, solving an array of even more mind-bending math with implications that will take an age to unravel. After years of review, his proof has just won him a Fields Medal--the 'Nobel of math'--awarded only once every four years. With no interest in fame, he refused to attend the ceremony, did not accept the medal, and stayed home to watch television.Perelman is a St. Petersburg hero, devoted to an ascetic life of the mind. The story of the enigma in the shape of space that he cracked is part history, part math, and a fascinating tale of the most abstract kind of creativity.

With British Snipers to the Reich


C. Shore - 1988
    Captain Shore’s enthusiasm for firearms and especially for rifles led him to take every possible opportunity to try out different weapons, ammunition and methods of shooting. His interest was combined with sound common sense, and he would never countenance a rumour about a particular weapon or incident unless he was able to confirm it for himself.As a result everything in this book is based on his personal experience. In World War II Captain Shore took part in the British landings at D-Day, and fought in Normandy and northern Europe. He came across many different weapons in varying condition, some of the worst being those used by the Dutch and Belgian resistance fighters. He was keen to learn from experienced snipers and then to train others, and he became an officer sniping instructor at the British Army of the Rhine Training Centre.He shares a wealth of first-hand knowledge of different rifles, pistols, machine guns, ammunition, telescopes, binoculars and all the equipment a sniper should carry. This is not only an account of sniping in World War II but also a guide to all aspects of sniping based on personal knowledge and experience in training and battle. Illustrated heavily with photos, pictures and other illustrations of snipers, their weapons and their tactics.