Machine Learning: A Probabilistic Perspective


Kevin P. Murphy - 2012
    Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach.The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

The Hundred-Page Machine Learning Book


Andriy Burkov - 2019
    During that week, you will learn almost everything modern machine learning has to offer. The author and other practitioners have spent years learning these concepts.Companion wiki — the book has a continuously updated wiki that extends some book chapters with additional information: Q&A, code snippets, further reading, tools, and other relevant resources.Flexible price and formats — choose from a variety of formats and price options: Kindle, hardcover, paperback, EPUB, PDF. If you buy an EPUB or a PDF, you decide the price you pay!Read first, buy later — download book chapters for free, read them and share with your friends and colleagues. Only if you liked the book or found it useful in your work, study or business, then buy it.

Show Me the Numbers: Designing Tables and Graphs to Enlighten


Stephen Few - 2004
    Information is provided on the fundamental concepts of table and graph design, the numbers and knowledge most suitable for display in a graphic form, the best tabular means to communicate certain ideas, and the component-level aspects of design. Analysts, technicians, and managers will appreciate the solid theory behind this outline for ensuring that tables and graphs present quantitative business information in a truthful, attractive format that facilitates better decision making.

The Cartoon Introduction to Statistics


Grady Klein - 2013
    Employing an irresistible cast of dragon-riding Vikings, lizard-throwing giants, and feuding aliens, the renowned illustrator Grady Klein and the award-winning statistician Alan Dabney teach you how to collect reliable data, make confident statements based on limited information, and judge the usefulness of polls and the other numbers that you're bombarded with every day. If you want to go beyond the basics, they've created the ultimate resource: "The Math Cave," where they reveal the more advanced formulas and concepts.Timely, authoritative, and hilarious, The Cartoon Introduction to Statistics is an essential guide for anyone who wants to better navigate our data-driven world.

Prealgebra


Richard Rusczyk - 2011
    Topics covered in the book include the properties of arithmetic, exponents, primes and divisors, fractions, equations and inequalities, decimals, ratios and proportions, unit conversions and rates, percents, square roots, basic geometry (angles, perimeter, area, triangles, and quadrilaterals), statistics, counting and probability, and more! The text is structured to inspire the reader to explore and develop new ideas. Each section starts with problems, giving the student a chance to solve them without help before proceeding. The text then includes solutions to these problems, through which algebraic techniques are taught. Important facts and powerful problem solving approaches are highlighted throughout the text. In addition to the instructional material, the book contains well over 1000 problems. The solutions manual (sold separately) contains full solutions to all of the problems, not just answers. This book can serve as a complete Prealgebra course. This text is supplemented by free videos and a free learning system at the publisher's website.

All of Statistics: A Concise Course in Statistical Inference


Larry Wasserman - 2003
    But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like nonparametric curve estimation, bootstrapping, and clas- sification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analyzing data. For some time, statistics research was con- ducted in statistics departments while data mining and machine learning re- search was conducted in computer science departments. Statisticians thought that computer scientists were reinventing the wheel. Computer scientists thought that statistical theory didn't apply to their problems. Things are changing. Statisticians now recognize that computer scientists are making novel contributions while computer scientists now recognize the generality of statistical theory and methodology. Clever data mining algo- rithms are more scalable than statisticians ever thought possible. Formal sta- tistical theory is more pervasive than computer scientists had realized.

Mostly Harmless Econometrics: An Empiricist's Companion


Joshua D. Angrist - 2008
    In the modern experimentalist paradigm, these techniques address clear causal questions such as: Do smaller classes increase learning? Should wife batterers be arrested? How much does education raise wages? Mostly Harmless Econometrics shows how the basic tools of applied econometrics allow the data to speak.In addition to econometric essentials, Mostly Harmless Econometrics covers important new extensions--regression-discontinuity designs and quantile regression--as well as how to get standard errors right. Joshua Angrist and Jorn-Steffen Pischke explain why fancier econometric techniques are typically unnecessary and even dangerous. The applied econometric methods emphasized in this book are easy to use and relevant for many areas of contemporary social science.An irreverent review of econometric essentials A focus on tools that applied researchers use most Chapters on regression-discontinuity designs, quantile regression, and standard errors Many empirical examples A clear and concise resource with wide applications

OpenIntro Statistics


David M. Diez - 2012
    Our inaugural effort is OpenIntro Statistics. Probability is optional, inference is key, and we feature real data whenever possible. Files for the entire book are freely available at openintro.org, and anybody can purchase a paperback copy from amazon.com for under $10.The future for OpenIntro depends on the involvement and enthusiasm of our community. Visit our website, openintro.org. We provide free course management tools, including an online question bank, utilities for creating course quizzes, and many other helpful resources.CERTAIN CONTENT THAT APPEARS ON THIS SITE COMES FROM AMAZON SERVICES LLC. THIS CONTENT IS PROVIDED ‘AS IS’ AND IS SUBJECT TO CHANGE OR REMOVAL AT ANY TIME.Can’t find it here? Search Amazon.com Search: All Products Apparel & AccessoriesBabyBeautyBooksCamera & PhotoCell Phones & ServiceClassical MusicComputersComputer & Video GamesDVDElectronicsGourmet FoodHome & GardenMiscellaneousHealth & Personal CareJewelry & WatchesKitchen & HousewaresMagazine SubscriptionsMusicMusical InstrumentsSoftwareSports & OutdoorsTools & HardwareToys & GamesVHS Keywords:

Probabilistic Graphical Models: Principles and Techniques


Daphne Koller - 2009
    The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Multivariable Calculus


James Stewart - 1991
    In the Fourth Edition CALCULUS, EARLY TRANSCENDENTALS these functions are introduced in the first chapter and their limits and derivatives are found in Chapters 2 and 3 at the same time as polynomials and other elementary functions. In this Fourth Edition, Stewart retains the focus on problem solving, the meticulous accuracy, the patient explanations, and the carefully graded problems that have made these texts word so well for a wide range of students. All new and unique features in CALCULUS, FOURTH EDITION have been incorporated into these revisions also.

The Cult of Statistical Significance: How the Standard Error Costs Us Jobs, Justice, and Lives


Stephen Thomas Ziliak - 2008
    If it takes a book to get it across, I hope this book will do it. It ought to.”—Thomas Schelling, Distinguished University Professor, School of Public Policy, University of Maryland, and 2005 Nobel Prize Laureate in Economics “With humor, insight, piercing logic and a nod to history, Ziliak and McCloskey show how economists—and other scientists—suffer from a mass delusion about statistical analysis. The quest for statistical significance that pervades science today is a deeply flawed substitute for thoughtful analysis. . . . Yet few participants in the scientific bureaucracy have been willing to admit what Ziliak and McCloskey make clear: the emperor has no clothes.”—Kenneth Rothman, Professor of Epidemiology, Boston University School of Health The Cult of Statistical Significance shows, field by field, how “statistical significance,” a technique that dominates many sciences, has been a huge mistake. The authors find that researchers in a broad spectrum of fields, from agronomy to zoology, employ “testing” that doesn’t test and “estimating” that doesn’t estimate. The facts will startle the outside reader: how could a group of brilliant scientists wander so far from scientific magnitudes? This study will encourage scientists who want to know how to get the statistical sciences back on track and fulfill their quantitative promise. The book shows for the first time how wide the disaster is, and how bad for science, and it traces the problem to its historical, sociological, and philosophical roots. Stephen T. Ziliak is the author or editor of many articles and two books. He currently lives in Chicago, where he is Professor of Economics at Roosevelt University. Deirdre N. McCloskey, Distinguished Professor of Economics, History, English, and Communication at the University of Illinois at Chicago, is the author of twenty books and three hundred scholarly articles. She has held Guggenheim and National Humanities Fellowships. She is best known for How to Be Human* Though an Economist (University of Michigan Press, 2000) and her most recent book, The Bourgeois Virtues: Ethics for an Age of Commerce (2006).

The Formula: How Algorithms Solve all our Problems … and Create More


Luke Dormehl - 2014
    What if everything in life could be reduced to a simple formula? What if numbers were able to tell us which partners we were best matched with – not just in terms of attractiveness, but for a long-term committed marriage? Or if they could say which films would be the biggest hits at the box office, and what changes could be made to those films to make them even more successful? Or even who out of us is likely to commit certain crimes, and when? This may sound like the world of science-fiction, but in fact it is just the tip of the iceberg in a world that is increasingly ruled by complex algorithms and neural networks.In The Formula, Luke Dormehl takes you inside the world of numbers, asking how we came to believe in the all-conquering power of algorithms; introducing the mathematicians, artificial intelligence experts and Silicon Valley entrepreneurs who are shaping this brave new world, and ultimately asking how we survive in an era where numbers can sometimes seem to create as many problems as they solve.

Using Multivariate Statistics


Barbara G. Tabachnick - 1983
    It givessyntax and output for accomplishing many analyses through the mostrecent releases of SAS, SPSS, and SYSTAT, some not available insoftware manuals. The book maintains its practical approach, stillfocusing on the benefits and limitations of applications of a techniqueto a data set -- when, why, and how to do it. Overall, it providesadvanced students with a timely and comprehensive introduction totoday's most commonly encountered statistical and multivariatetechniques, while assuming only a limited knowledge of higher-levelmathematics.

The Monty Hall Problem: The Remarkable Story of Math's Most Contentious Brain Teaser


Jason Rosenhouse - 2009
    Imagine that you face three doors, behind one of which is a prize. You choose one but do not open it. The host--call him Monty Hall--opens a different door, alwayschoosing one he knows to be empty. Left with two doors, will you do better by sticking with your first choice, or by switching to the other remaining door? In this light-hearted yet ultimately serious book, Jason Rosenhouse explores the history of this fascinating puzzle. Using a minimum ofmathematics (and none at all for much of the book), he shows how the problem has fascinated philosophers, psychologists, and many others, and examines the many variations that have appeared over the years. As Rosenhouse demonstrates, the Monty Hall Problem illuminates fundamental mathematical issuesand has abiding philosophical implications. Perhaps most important, he writes, the problem opens a window on our cognitive difficulties in reasoning about uncertainty.

Introductory Linear Algebra: An Applied First Course


Bernard Kolman - 1988
    Calculus is not a prerequisite, although examples and exercises using very basic calculus are included (labeled Calculus Required.) The most technology-friendly text on the market, Introductory Linear Algebra is also the most flexible. By omitting certain sections, instructors can cover the essentials of linear algebra (including eigenvalues and eigenvectors), to show how the computer is used, and to introduce applications of linear algebra in a one-semester course.