Pro Git


Scott Chacon - 2009
    It took the open source world by storm since its inception in 2005, and is used by small development shops and giants like Google, Red Hat, and IBM, and of course many open source projects.A book by Git experts to turn you into a Git expert. Introduces the world of distributed version control Shows how to build a Git development workflow.

Eloquent Ruby


Russ Olsen - 2011
    In Eloquent Ruby, Russ Olsen helps you write Ruby like true Rubyists do-so you can leverage its immense, surprising power. Olsen draws on years of experience internalizing the Ruby culture and teaching Ruby to other programmers. He guides you to the "Ah Ha!" moments when it suddenly becomes clear why Ruby works the way it does, and how you can take advantage of this language's elegance and expressiveness. Eloquent Ruby starts small, answering tactical questions focused on a single statement, method, test, or bug. You'll learn how to write code that actually looks like Ruby (not Java or C#); why Ruby has so many control structures; how to use strings, expressions, and symbols; and what dynamic typing is really good for. Next, the book addresses bigger questions related to building methods and classes. You'll discover why Ruby classes contain so many tiny methods, when to use operator overloading, and when to avoid it. Olsen explains how to write Ruby code that writes its own code-and why you'll want to. He concludes with powerful project-level features and techniques ranging from gems to Domain Specific Languages. A part of the renowned Addison-Wesley Professional Ruby Series, Eloquent Ruby will help you "put on your Ruby-colored glasses" and get results that make you a true believer.

Neural Networks and Deep Learning


Michael Nielsen - 2013
    The book will teach you about:* Neural networks, a beautiful biologically-inspired programming paradigm which enables a computer to learn from observational data* Deep learning, a powerful set of techniques for learning in neural networksNeural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you the core concepts behind neural networks and deep learning.

Concrete Mathematics: A Foundation for Computer Science


Ronald L. Graham - 1988
    "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems."

Machine Learning: An Algorithmic Perspective


Stephen Marsland - 2009
    The field is ready for a text that not only demonstrates how to use the algorithms that make up machine learning methods, but also provides the background needed to understand how and why these algorithms work. Machine Learning: An Algorithmic Perspective is that text.Theory Backed up by Practical ExamplesThe book covers neural networks, graphical models, reinforcement learning, evolutionary algorithms, dimensionality reduction methods, and the important area of optimization. It treads the fine line between adequate academic rigor and overwhelming students with equations and mathematical concepts. The author addresses the topics in a practical way while providing complete information and references where other expositions can be found. He includes examples based on widely available datasets and practical and theoretical problems to test understanding and application of the material. The book describes algorithms with code examples backed up by a website that provides working implementations in Python. The author uses data from a variety of applications to demonstrate the methods and includes practical problems for students to solve.Highlights a Range of Disciplines and ApplicationsDrawing from computer science, statistics, mathematics, and engineering, the multidisciplinary nature of machine learning is underscored by its applicability to areas ranging from finance to biology and medicine to physics and chemistry. Written in an easily accessible style, this book bridges the gaps between disciplines, providing the ideal blend of theory and practical, applicable knowledge."

Artificial Intelligence for Games (The Morgan Kaufmann Series in Interactive 3D Technology)


Ian Millington - 2006
    The commercial success of a game is often dependent upon the quality of the AI, yet the engineering of AI is often begun late in the development process and is frequently misunderstood. In this book, Ian Millington brings extensive professional experience to the problem of improving the quality of AI in games. A game developer since 1987, he was founder of Mindlathe Ltd., at the time the largest specialist AI company in gaming. Ian shows how to think about AI as an integral part of game play. He describes numerous examples from real games and explores the underlying ideas through detailed case studies. He goes further to introduce many techniques little used by developers today. The book's CD-ROM contains a library of C++ source code and demonstration programs, and provides access to a website with a complete commercial source code library of AI algorithms and techniques. * A comprehensive, professional tutorial and reference to implement true AI in games.* Walks through the entire development process from beginning to end.* Includes over 100 pseudo code examples of techniques used in commercial games, case studies for all major genres, a CD-ROM and companion website with extensive C++ source code implementations for Windows, and source code libraries for Linux and OS X available through the website.

Programming WCF Services


Juval Lowy - 2007
    Relentlessly practical, the book delivers insight, not documentation, to teach developers what they need to know to build the next generation of SOAs.After explaining the advantages of service-orientation for application design and teaching the basics of how to develop SOAs using WCF, the book shows how you can take advantage of built-in features such as service hosting, instance management, asynchronous calls, synchronization, reliability, transaction management, disconnected queued calls and security to build best in class applications. "Programming WCF Services" focuses on the rationale behind particular design decisions, often shedding light on poorly-documented and little-understood aspects of SOA development. Developers and architects will learn not only the "how" of WCF programming, but also relevant design guidelines, best practices, and pitfalls. Original techniques and utilities provided by the author throughout the book go well beyond anything that can be found in conventional sources.Based on experience and insight gained while taking part in the strategic design of WCF and working with the team that implemented it, "Programming WCF Services" provides experienced working professionals with the definitive work on WCF. Not only will this book make you a WCF expert, it will make you a better software engineer. It's the Rosetta Stone of WCF.

Pro C# 3.0 and the .NET 3.5 Framework (Pro)


Andrew Troelsen - 2007
    Since that time, this text has been revised, tweaked, and enhanced to account for the changes found within each release of the .NET platform (1.1, 2.0, 3.0 and now 3.5)..NET 3.0 was more of an augmentative release, essentially providing three new APIs: Windows Presentation Foundation (WPF), Windows Communication Foundation (WCF) and Windows Workflow Foundation (WF). As you would expect, coverage of the "W's" has been expanded a great deal in this version of the book from the previous Special Edition text.Unlike .NET 3.0, .NET 3.5 provides dozens of C# language features and .NET APIs. This edition of the book will walk you through all of this material using the same readable approach as was found in previous editions. Rest assured, you'll find detailed coverage of Language Integrated Query (LINQ), the C# 2008 language changes (automatic properties, extension methods, anonymous types, etc.) and the numerous bells and whistles of Visual Studio 2008. What you'll learn Everything you need to knowget up to speed with C# 2008 quickly and efficiently. Discover all the new .NET 3.5 featuresLanguage Integrated Query, anonymous types, extension methods, automatic properties, and more. Get a professional footholdtargeted to appeal to experienced software professionals, this book gives you the facts you need the way you need to see them. A rock-solid foundationfocuses on everything you need to be a successful .NET 3.5 programmer, not just the new features. Get comfortable with all the core aspects of the platform including assemblies, remoting, Windows Forms, Web Forms, ADO.NET, XML web services, and much more. Who this book is forIf you're checking out this book for the first time, understand that it targets experienced software professionals and/or students of computer science (so please don't expect three chapters devoted to "for" loops). The mission of this text is to provide you with a rock-solid foundation to the C# 2008 programming language and the core aspects of the .NET platform (object-oriented programming, assemblies, file IO, Windows Forms/WPF, ASP.NET, ADO.NET, WCF, WF, etc.). Once you digest the information presented in these 33 chapters, you'll be in a perfect position to apply this knowledge to your specific programming assignments, and you'll be well equipped to explore the .NET universe on your own terms. "

In the Beginning...Was the Command Line


Neal Stephenson - 1999
    And considering that the "one man" is Neal Stephenson, "the hacker Hemingway" (Newsweek) -- acclaimed novelist, pragmatist, seer, nerd-friendly philosopher, and nationally bestselling author of groundbreaking literary works (Snow Crash, Cryptonomicon, etc., etc.) -- the word is well worth hearing. Mostly well-reasoned examination and partial rant, Stephenson's In the Beginning... was the Command Line is a thoughtful, irreverent, hilarious treatise on the cyber-culture past and present; on operating system tyrannies and downloaded popular revolutions; on the Internet, Disney World, Big Bangs, not to mention the meaning of life itself.

Game Programming Patterns


Robert Nystrom - 2011
    Commercial game development expert Robert Nystrom presents an array of general solutions to problems encountered in game development. For example, you'll learn how double-buffering enables a player to perceive smooth and realistic motion, and how the service locator pattern can help you provide access to services such as sound without coupling your code to any particular sound driver or sound hardware. Games have much in common with other software, but also a number of unique constraints. Some of the patterns in this book are well-known in other domains of software development. Other of the patterns are unique to gaming. In either case, Robert Nystrom bridges from the ivory tower world of software architecture to the in-the-trenches reality of hardcore game programming. You'll learn the patterns and the general problems that they solve. You'll come away able to apply powerful and reusable architectural solutions that enable you to produce higher quality games with less effort than before. Applies classic design patterns to game programming. Introduces new patterns specific to game programming. Brings abstract software architecture down to Earth with approachable writing and an emphasis on simple code that shows each pattern in practice. What you'll learn Overcome architectural challenges unique to game programming Apply lessons from the larger software world to games. Tie different parts of a game (graphics, sound, AI) into a cohesive whole. Create elegant and maintainable architecture. Achieve good, low-level performance. Gain insight into professional, game development. Who this book is forGame Programming Patterns is aimed at professional game programmers who, while successful in shipping games, are frustrated at how hard it sometimes is to add and modify features when a game is under development. Game Programming Patterns shows how to apply modern software practices to the problem of game development while still maintaining the blazing-fast performance demanded by hard-core gamers. Game Programming Patterns also appeals to those learning about game programming in their spare time. Hobbyists and aspiring professionals alike will find much to learn in this book about pathfinding, collision detection, and other game-programming problem domains.

Building Microservices: Designing Fine-Grained Systems


Sam Newman - 2014
    But developing these systems brings its own set of headaches. With lots of examples and practical advice, this book takes a holistic view of the topics that system architects and administrators must consider when building, managing, and evolving microservice architectures.Microservice technologies are moving quickly. Author Sam Newman provides you with a firm grounding in the concepts while diving into current solutions for modeling, integrating, testing, deploying, and monitoring your own autonomous services. You'll follow a fictional company throughout the book to learn how building a microservice architecture affects a single domain.Discover how microservices allow you to align your system design with your organization's goalsLearn options for integrating a service with the rest of your systemTake an incremental approach when splitting monolithic codebasesDeploy individual microservices through continuous integrationExamine the complexities of testing and monitoring distributed servicesManage security with user-to-service and service-to-service modelsUnderstand the challenges of scaling microservice architectures

Computer Science Distilled: Learn the Art of Solving Computational Problems


Wladston Ferreira Filho - 2017
    Designed for readers who don't need the academic formality, it's a fast and easy computer science guide. It teaches essential concepts for people who want to program computers effectively. First, it introduces discrete mathematics, then it exposes the most common algorithms and data structures. It also shows the principles that make computers and programming languages work.

Data Science for Business: What you need to know about data mining and data-analytic thinking


Foster Provost - 2013
    This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates

Dreaming in Code: Two Dozen Programmers, Three Years, 4,732 Bugs, and One Quest for Transcendent Software


Scott Rosenberg - 2007
    Along the way, we encounter black holes, turtles, snakes, dragons, axe-sharpening, and yak-shaving—and take a guided tour through the theories and methods, both brilliant and misguided, that litter the history of software development, from the famous ‘mythical man-month’ to Extreme Programming. Not just for technophiles but for anyone captivated by the drama of invention, Dreaming in Code offers a window into both the information age and the workings of the human mind.

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference


Cameron Davidson-Pilon - 2014
    However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.