Game Theory


Drew Fudenberg - 1991
    The analytic material is accompanied by many applications, examples, and exercises. The theory of noncooperative games studies the behavior of agents in any situation where each agent's optimal choice may depend on a forecast of the opponents' choices. "Noncooperative" refers to choices that are based on the participant's perceived selfinterest. Although game theory has been applied to many fields, Fudenberg and Tirole focus on the kinds of game theory that have been most useful in the study of economic problems. They also include some applications to political science. The fourteen chapters are grouped in parts that cover static games of complete information, dynamic games of complete information, static games of incomplete information, dynamic games of incomplete information, and advanced topics.--mitpress.mit.edu

An Introduction to Statistical Learning: With Applications in R


Gareth James - 2013
    This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Mathematical Statistics with Applications (Mathematical Statistics (W/ Applications))


Dennis D. Wackerly - 1995
    Premiere authors Dennis Wackerly, William Mendenhall, and Richard L. Scheaffer present a solid foundation in statistical theory while conveying the relevance and importance of the theory in solving practical problems in the real world. The authors' use of practical applications and excellent exercises helps readers discover the nature of statistics and understand its essential role in scientific research.

Symmetry


Hermann Weyl - 1952
    Hermann Weyl explores the concept of symmetry beginning with the idea that it represents a harmony of proportions, and gradually departs to examine its more abstract varieties and manifestations--as bilateral, translatory, rotational, ornamental, and crystallographic. Weyl investigates the general abstract mathematical idea underlying all these special forms, using a wealth of illustrations as support. Symmetry is a work of seminal relevance that explores the great variety of applications and importance of symmetry.

Spacetime Physics


Edwin F. Taylor - 1966
    Written by two of the field's true pioneers, Spacetime Physics can extend and enhance coverage of specialty relativity in the classroom. This thoroughly up-to-date, highly accessible overview covers microgravity, collider accelerators, satellite probes, neutron detectors, radioastronomy, and pulsars.  The chapter on general relativity with new material on gravity waves, black holes, and cosmology.

Think Complexity: Complexity Science and Computational Modeling


Allen B. Downey - 2009
    Whether you’re an intermediate-level Python programmer or a student of computational modeling, you’ll delve into examples of complex systems through a series of exercises, case studies, and easy-to-understand explanations.You’ll work with graphs, algorithm analysis, scale-free networks, and cellular automata, using advanced features that make Python such a powerful language. Ideal as a text for courses on Python programming and algorithms, Think Complexity will also help self-learners gain valuable experience with topics and ideas they might not encounter otherwise.Work with NumPy arrays and SciPy methods, basic signal processing and Fast Fourier Transform, and hash tablesStudy abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machinesGet starter code and solutions to help you re-implement and extend original experiments in complexityExplore the philosophy of science, including the nature of scientific laws, theory choice, realism and instrumentalism, and other topicsExamine case studies of complex systems submitted by students and readers

Heard on The Street: Quantitative Questions from Wall Street Job Interviews


Timothy Falcon Crack - 2000
    The interviewers use the same questions year-after-year and here they are---with solutions! These questions come from all types of interviews (corporate finance, sales and trading, quant research, etc), but they are especially likely in quantitative capital markets job interviews. The questions come from all levels of interviews (undergrad, MBA, PhD), but they are especially likely if you have, or almost have, an MS or MBA. The latest edition includes over 120 non-quantitative actual interview questions, and a new section on interview technique---based partly on Dr. Crack's experiences interviewing candidates for the world's largest institutional asset manager. Dr. Crack has a PhD from MIT. He has won many teaching awards and has publications in the top academic, practitioner, and teaching journals in finance. He has degrees in Mathematics/Statistics, Finance, and Financial Economics and a diploma in Accounting/Finance. Dr. Crack taught at the university level for 20 years including four years as a front line teaching assistant for MBA students at MIT. He recently headed a quantitative active equity research team at the world's largest institutional money manager.

R Programming for Data Science


Roger D. Peng - 2015
    

Neural Networks for Pattern Recognition


Christopher M. Bishop - 1996
    After introducing the basic concepts, the book examines techniques for modeling probability density functions and the properties and merits of the multi-layerperceptron and radial basis function network models. Also covered are various forms of error functions, principal algorithms for error function minimalization, learning and generalization in neural networks, and Bayesian techniques and their applications. Designed as a text, with over 100exercises, this fully up-to-date work will benefit anyone involved in the fields of neural computation and pattern recognition.

Code Breaking: A History and Exploration


Rudolf Kippenhahn - 1999
    In Code Breaking , Rudolf Kippenhahn offers readers both an exciting chronicle of cryptography and a lively exploration of the cryptographer’s craft. Rich with vivid anecdotes from a history of coding and decoding and featuring three new chapters, this revised and expanded edition makes the often abstruse art of deciphering coded messages accessible to the general reader and reveals the relevance of codes to our everyday high-tech society. A stylishly written, meticulously researched adventure, Code Breaking explores the ways in which communication can be obscured and, like magic, made clear again.

Linear Algebra


Georgi E. Shilov - 1971
    Shilov, Professor of Mathematics at the Moscow State University, covers determinants, linear spaces, systems of linear equations, linear functions of a vector argument, coordinate transformations, the canonical form of the matrix of a linear operator, bilinear and quadratic forms, Euclidean spaces, unitary spaces, quadratic forms in Euclidean and unitary spaces, finite-dimensional algebras and their representations, with an appendix on categories of finite-dimensional spaces.The author begins with elementary material and goes easily into the advanced areas, covering all the standard topics of an advanced undergraduate or beginning graduate course. The material is presented in a consistently clear style. Problems are included, with a full section of hints and answers in the back.Keeping in mind the unity of algebra, geometry and analysis in his approach, and writing practically for the student who needs to learn techniques, Professor Shilov has produced one of the best expositions on the subject. Because it contains an abundance of problems and examples, the book will be useful for self-study as well as for the classroom.

Linear Systems and Signals


B.P. Lathi - 1992
    It gives clear descriptions of linear systems and uses mathematics not only to prove axiomatic theory, but also to enhance physical and intuitive understanding.

Algebra


Aurelio Baldor - 1983
    This revised edition includes a CD-Rom with exercises that will help the student have a better understanding of equations, formulas, etc.