Book picks similar to
Introduction to Probability by Joseph K. Blitzstein
math
mathematics
statistics
science
Feynman Lectures On Computation
Richard P. Feynman - 1996
Feynman gave his famous course on computation at the California Institute of Technology, he asked Tony Hey to adapt his lecture notes into a book. Although led by Feynman, the course also featured, as occasional guest speakers, some of the most brilliant men in science at that time, including Marvin Minsky, Charles Bennett, and John Hopfield. Although the lectures are now thirteen years old, most of the material is timeless and presents a “Feynmanesque” overview of many standard and some not-so-standard topics in computer science such as reversible logic gates and quantum computers.
Principles of Mathematical Analysis
Walter Rudin - 1964
The text begins with a discussion of the real number system as a complete ordered field. (Dedekind's construction is now treated in an appendix to Chapter I.) The topological background needed for the development of convergence, continuity, differentiation and integration is provided in Chapter 2. There is a new section on the gamma function, and many new and interesting exercises are included. This text is part of the Walter Rudin Student Series in Advanced Mathematics.
The Art of Computer Programming, Volumes 1-4a Boxed Set
Donald Ervin Knuth - 2011
Scientists have marveled at the beauty and elegance of his analysis, while ordinary programmers have successfully applied his "cookbook" solutions to their day-to-day problems. All have admired Knuth for the breadth, clarity, accuracy, and good humor found in his books. "I can't begin to tell you how many pleasurable hours of study and recreation they have afforded me I have pored over them in cars, restaurants, at work, at home... and even at a Little League game when my son wasn't in the line-up.""--"Charles Long Primarily written as a reference, some people have nevertheless found it possible and interesting to read each volume from beginning to end. A programmer in China even compared the experience to reading a poem. "If you think you're a really good programmer... read Knuth's] "Art of Computer Programming.".. You should definitely send me a resume if you can read the whole thing.""--"Bill Gates Whatever your background, if you need to do any serious computer programming, you will find your own good reason to make each volume in this series a readily accessible part of your scholarly or professional library. "It's always a pleasure when a problem is hard enough that you have to get the Knuths off the shelf. I find that merely opening one has a very useful terrorizing effect on computers.""--"Jonathan LaventholIn describing the new fourth volume, one reviewer listed the qualities that distinguish all of Knuth's work. In sum: ] "detailed coverage of the basics, illustrated with well-chosen examples; occasional forays into more esoteric topics and problems at the frontiers of research; impeccable writing peppered with occasional bits of humor; extensive collections of exercises, all with solutions or helpful hints; a careful attention to history; implementations of many of the algorithms in his classic step-by-step form."--Frank RuskeyThese four books comprise what easily could be the most important set of information on any serious programmer's bookshelf.
Algebra
Michael Artin - 1991
Linear algebra is tightly integrated into the text.
Coding the Matrix: Linear Algebra through Computer Science Applications
Philip N. Klein - 2013
Mathematical concepts and computational problems are motivated by applications in computer science. The reader learns by "doing," writing programs to implement the mathematical concepts and using them to carry out tasks and explore the applications. Examples include: error-correcting codes, transformations in graphics, face detection, encryption and secret-sharing, integer factoring, removing perspective from an image, PageRank (Google's ranking algorithm), and cancer detection from cell features. A companion web site, codingthematrix.com provides data and support code. Most of the assignments can be auto-graded online. Over two hundred illustrations, including a selection of relevant "xkcd" comics. Chapters: "The Function," "The Field," "The Vector," "The Vector Space," "The Matrix," "The Basis," "Dimension," "Gaussian Elimination," "The Inner Product," "Special Bases," "The Singular Value Decomposition," "The Eigenvector," "The Linear Program"
Probabilistic Robotics
Sebastian Thrun - 2005
Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.
From Mathematics to Generic Programming
Alexander A. Stepanov - 2014
If you're a reasonably proficient programmer who can think logically, you have all the background you'll need. Stepanov and Rose introduce the relevant abstract algebra and number theory with exceptional clarity. They carefully explain the problems mathematicians first needed to solve, and then show how these mathematical solutions translate to generic programming and the creation of more effective and elegant code. To demonstrate the crucial role these mathematical principles play in many modern applications, the authors show how to use these results and generalized algorithms to implement a real-world public-key cryptosystem. As you read this book, you'll master the thought processes necessary for effective programming and learn how to generalize narrowly conceived algorithms to widen their usefulness without losing efficiency. You'll also gain deep insight into the value of mathematics to programming--insight that will prove invaluable no matter what programming languages and paradigms you use. You will learn aboutHow to generalize a four thousand-year-old algorithm, demonstrating indispensable lessons about clarity and efficiencyAncient paradoxes, beautiful theorems, and the productive tension between continuous and discreteA simple algorithm for finding greatest common divisor (GCD) and modern abstractions that build on itPowerful mathematical approaches to abstractionHow abstract algebra provides the idea at the heart of generic programmingAxioms, proofs, theories, and models: using mathematical techniques to organize knowledge about your algorithms and data structuresSurprising subtleties of simple programming tasks and what you can learn from themHow practical implementations can exploit theoretical knowledge
Make Your Own Neural Network: An In-depth Visual Introduction For Beginners
Michael Taylor - 2017
A step-by-step visual journey through the mathematics of neural networks, and making your own using Python and Tensorflow.
Gödel's Proof
Ernest Nagel - 1958
Gödel received public recognition of his work in 1951 when he was awarded the first Albert Einstein Award for achievement in the natural sciences--perhaps the highest award of its kind in the United States. The award committee described his work in mathematical logic as "one of the greatest contributions to the sciences in recent times."However, few mathematicians of the time were equipped to understand the young scholar's complex proof. Ernest Nagel and James Newman provide a readable and accessible explanation to both scholars and non-specialists of the main ideas and broad implications of Gödel's discovery. It offers every educated person with a taste for logic and philosophy the chance to understand a previously difficult and inaccessible subject.New York University Press is proud to publish this special edition of one of its bestselling books. With a new introduction by Douglas R. Hofstadter, this book will appeal students, scholars, and professionals in the fields of mathematics, computer science, logic and philosophy, and science.
Data Jujitsu: The Art of Turning Data into Product
D.J. Patil - 2012
Acclaimed data scientist DJ Patil details a new approach to solving problems in Data Jujitsu.Learn how to use a problem's "weight" against itself to:Break down seemingly complex data problems into simplified partsUse alternative data analysis techniques to examine themUse human input, such as Mechanical Turk, and design tricks that enlist the help of your users to take short cuts around tough problemsLearn more about the problems before starting on the solutions—and use the findings to solve them, or determine whether the problems are worth solving at all.
Automating Inequality: How High-Tech Tools Profile, Police, and Punish the Poor
Virginia Eubanks - 2018
In Pittsburgh, a child welfare agency uses a statistical model to try to predict which children might be future victims of abuse or neglect.Since the dawn of the digital age, decision-making in finance, employment, politics, health and human services has undergone revolutionary change. Today, automated systems—rather than humans—control which neighborhoods get policed, which families attain needed resources, and who is investigated for fraud. While we all live under this new regime of data, the most invasive and punitive systems are aimed at the poor.In Automating Inequality, Virginia Eubanks systematically investigates the impacts of data mining, policy algorithms, and predictive risk models on poor and working-class people in America. The book is full of heart-wrenching and eye-opening stories, from a woman in Indiana whose benefits are literally cut off as she lays dying to a family in Pennsylvania in daily fear of losing their daughter because they fit a certain statistical profile.The U.S. has always used its most cutting-edge science and technology to contain, investigate, discipline and punish the destitute. Like the county poorhouse and scientific charity before them, digital tracking and automated decision-making hide poverty from the middle-class public and give the nation the ethical distance it needs to make inhumane choices: which families get food and which starve, who has housing and who remains homeless, and which families are broken up by the state. In the process, they weaken democracy and betray our most cherished national values.This deeply researched and passionate book could not be more timely.Naomi Klein: "This book is downright scary."Ethan Zuckerman, MIT: "Should be required reading."Dorothy Roberts, author of Killing the Black Body: "A must-read for everyone concerned about modern tools of inequality in America."Astra Taylor, author of The People's Platform: "This is the single most important book about technology you will read this year."
Ordinary Differential Equations
Morris Tenenbaum - 1985
Subsequent sections deal with integrating factors; dilution and accretion problems; linearization of first order systems; Laplace Transforms; Newton's Interpolation Formulas, more.
Fifty Challenging Problems in Probability with Solutions
Frederick Mosteller - 1965
Selected for originality, general interest, or because they demonstrate valuable techniques, the problems are ideal as a supplement to courses in probability or statistics, or as stimulating recreation for the mathematically minded. Detailed solutions. Illustrated.
Design and Analysis of Experiments
Douglas C. Montgomery - 1976
Douglas Montgomery arms readers with the most effective approach for learning how to design, conduct, and analyze experiments that optimize performance in products and processes. He shows how to use statistically designed experiments to obtain information for characterization and optimization of systems, improve manufacturing processes, and design and develop new processes and products. You will also learn how to evaluate material alternatives in product design, improve the field performance, reliability, and manufacturing aspects of products, and conduct experiments effectively and efficiently. Discover how to improve the quality and efficiency of working systems with this highly-acclaimed book. This 6th Edition: Places a strong focus on the use of the computer, providing output from two software products: Minitab and DesignExpert. Presents timely, new examples as well as expanded coverage on adding runs to a fractional factorial to de-alias effects. Includes detailed discussions on how computers are currently used in the analysis and design of experiments. Offers new material on a number of important topics, including follow-up experimentation and split-plot design. Focuses even more sharply on factorial and fractional factorial design.
Machine Learning for Absolute Beginners
Oliver Theobald - 2017
The manner in which computers are now able to mimic human thinking is rapidly exceeding human capabilities in everything from chess to picking the winner of a song contest. In the age of machine learning, computers do not strictly need to receive an ‘input command’ to perform a task, but rather ‘input data’. From the input of data they are able to form their own decisions and take actions virtually as a human would. But as a machine, can consider many more scenarios and execute calculations to solve complex problems. This is the element that excites companies and budding machine learning engineers the most. The ability to solve complex problems never before attempted. This is also perhaps one reason why you are looking at purchasing this book, to gain a beginner's introduction to machine learning. This book provides a plain English introduction to the following topics: - Artificial Intelligence - Big Data - Downloading Free Datasets - Regression - Support Vector Machine Algorithms - Deep Learning/Neural Networks - Data Reduction - Clustering - Association Analysis - Decision Trees - Recommenders - Machine Learning Careers This book has recently been updated following feedback from readers. Version II now includes: - New Chapter: Decision Trees - Cleanup of minor errors