Gravitation


Charles W. Misner - 1973
    These sections together make an appropriate one-term advanced/graduate level course (mathematical prerequisites: vector analysis and simple partial-differential equations). The book is printed to make it easy for readers to identify these sections.• The remaining Track 2 material provides a wealth of advanced topics instructors can draw from to flesh out a two-term course, with Track 1 sections serving as prerequisites.

The Trouble with Physics: The Rise of String Theory, the Fall of a Science and What Comes Next


Lee Smolin - 2006
    For more than two centuries, our understanding of the laws of nature expanded rapidly. But today, despite our best efforts, we know nothing more about these laws than we knew in the 1970s. Why is physics suddenly in trouble? And what can we do about it?One of the major problems, according to Smolin, is string theory: an ambitious attempt to formulate a “theory of everything” that explains all the particles and forces of nature and how the universe came to be. With its exotic new particles and parallel universes, string theory has captured the public’s imagination and seduced many physicists.But as Smolin reveals, there’s a deep flaw in the theory: no part of it has been tested, and no one knows how to test it. In fact, the theory appears to come in an infinite number of versions, meaning that no experiment will ever be able to prove it false. As a scientific theory, it fails. And because it has soaked up the lion’s share of funding, attracted some of the best minds, and effectively penalized young physicists for pursuing other avenues, it is dragging the rest of physics down with it.With clarity, passion, and authority, Smolin charts the rise and fall of string theory and takes a fascinating look at what will replace it. A group of young theorists has begun to develop exciting ideas that, unlike string theory, are testable. Smolin not only tells us who and what to watch for in the coming years, he offers novel solutions for seeking out and nurturing the best new talent—giving us a chance, at long last, of finding the next Einstein.

Environmental Politics and Policy


Walter A. Rosenbaum - 1995
    What are the major environmental policy changes under the George W. Bush administration, and how do they compare with policies of previous administrations? What are the merits - and limits - of recent market approaches to environmental regulation and management? How can students best understand the concept of acceptable risk and other scientifically-based decision making tools with regard to the regulation of toxic substances? Rosenbaum's classic, comprehensive text - now in a totally revised sixth edition - offers definitive coverage of environmental politics and policy, lively case material, and a balanced assessment of current environmental issues. actors, institutions, and processes involved in environmental policymaking, giving students a solid foundation for understanding our most pressing environmental concerns. In addition, Rosenbaum provides in-depth coverage of emerging environmental issues, such as sustainable development and transboundary policymaking, and pays special attention to the interrelation of science and politics and to the economic issues associated with environmental regulation. New coverage includes: Crisp analysis of the Bush administration's most significant environmental decisions, with particular attention to the conflict between conservative and environmentalist approaches to ecological issues. Streamlined discussion of the policy process, key institutions and actors, and issues common to environmental policy problems. environmental policymaking. Updated discussion of the political impacts of technical decisions, especially with respect to risk analysis. Extended coverage of the emerging politics of transboundary environmentalism, including ecosystem management, sustainable development, climate warming, and acid rain. Balanced discussion of petroleum consumption and its environmental impact and greater attention to the politics of energy conservation, including regulatory and technological approaches. New and revised tables and figures capturin

Gravity's Century: From Einstein's Eclipse to Images of Black Holes


Ron Cowen - 2019
    On that day, astronomer Arthur Eddington and his team observed a solar eclipse and found something extraordinary: gravity bends light, just as Einstein predicted. The finding confirmed the theory of general relativity, fundamentally changing our understanding of space and time.A century later, another group of astronomers is performing a similar experiment on a much larger scale. The Event Horizon Telescope, a globe-spanning array of radio dishes, is examining space surrounding Sagittarius A*, the supermassive black hole at the center of the Milky Way. As Ron Cowen recounts, the foremost goal of the experiment is to determine whether Einstein was right on the details. Gravity lies at the heart of what we don't know about quantum mechanics, but tantalizing possibilities for deeper insight are offered by black holes. By observing starlight wrapping around Sagittarius A*, the telescope will not only provide the first direct view of an event horizon--a black hole's point of no return--but will also enable scientists to test Einstein's theory under the most extreme conditions.Gravity's Century shows how we got from the pivotal observations of the 1919 eclipse to the Event Horizon Telescope, and what is at stake today. Breaking down the physics in clear and approachable language, Cowen makes vivid how the quest to understand gravity is really the quest to comprehend the universe.

The Oxford Book of Modern Science Writing


Richard DawkinsD'Arcy Wentworth Thompson - 2008
    Readers will find excerpts from bestsellers such as Douglas R. Hofstadter's Gödel, Escher, Bach, Francis Crick's Life Itself, Loren Eiseley's The Immense Journey, Daniel Dennett's Darwin's Dangerous Idea, and Rachel Carson's The Sea Around Us. There are classic essays ranging from J.B.S. Haldane's "On Being the Right Size" and Garrett Hardin's "The Tragedy of the Commons" to Alan Turing's "Computing Machinery and Intelligence" and Albert Einstein's famed New York Times article on "Relativity." And readers will also discover lesser-known but engaging pieces such as Lewis Thomas's "Seven Wonders of Science," J. Robert Oppenheimer on "War and Physicists," and Freeman Dyson's memoir of studying under Hans Bethe.A must-read volume for all science buffs, The Oxford Book of Modern Science Writing is a rich and vibrant anthology that captures the poetry and excitement of scientific thought and discovery.One of New Scientist's Editor's Picks for 2008.

Contemporary Linguistics: An Introduction


William D. O'Grady - 1987
    Meticulously prepared, it is one of the most comprehensive, authoritative, up-to-date introductory resources on the market. The book’s extensive examples and exercises help students master the course material, and its lucid writing style makes complex concepts easy to understand.

University Physics with Modern Physics


Hugh D. Young - 1949
    Offering time-tested problems, conceptual and visual pedagogy, and a state-of-the-art media package, this 11th edition looks to the future of university physics, in terms of both content and approach.

Writing Papers in the Biological Sciences


Victoria E. McMillan - 1996
    Designed primarily for undergraduates, this self-help manual offers straightforward solutions to common problems and an overview of the diversity of writing tasks faced by professional biologists.

Superstrings And The Search For The Theory Of Everything


F. David Peat - 1988
    David Peat explains the development and meaning of this Superstring Theory in a thoroughly readable, dramatic manner accessible to lay readers with no knowledge of mathematics. The consequences of the Superstring Theory are nothing less than astonishing.

Why Size Matters: From Bacteria to Blue Whales


John Tyler Bonner - 2006
    In his hallmark friendly style, he explores the universal impact of being the right size. By examining stories ranging from Alice in Wonderland to Gulliver's Travels, he shows that humans have always been fascinated by things big and small. Why then does size always reside on the fringes of science and never on the center stage? Why do biologists and others ponder size only when studying something else--running speed, life span, or metabolism? Why Size Matters, a pioneering book of big ideas in a compact size, gives size its due by presenting a profound yet lucid overview of what we know about its role in the living world. Bonner argues that size really does matter--that it is the supreme and universal determinant of what any organism can be and do. For example, because tiny creatures are subject primarily to forces of cohesion and larger beasts to gravity, a fly can easily walk up a wall, something we humans cannot even begin to imagine doing.Bonner introduces us to size through the giants and dwarfs of human, animal, and plant history and then explores questions including the physics of size as it affects biology, the evolution of size over geological time, and the role of size in the function and longevity of living things.As this elegantly written book shows, size affects life in its every aspect. It is a universal frame from which nothing escapes.

The Extravagant Universe: Exploding Stars, Dark Energy, and the Accelerating Cosmos


Robert P. Kirshner - 2002
    One of the world's leading astronomers, Robert Kirshner, takes readers inside a lively research team on the quest that led them to an extraordinary cosmological discovery: the expansion of the universe is accelerating under the influence of a dark energy that makes space itself expand. In addition to sharing the story of this exciting discovery, Kirshner also brings the science up-to-date in a new epilogue. He explains how the idea of an accelerating universe--once a daring interpretation of sketchy data--is now the standard assumption in cosmology today.This measurement of dark energy--a quality of space itself that causes cosmic acceleration--points to a gaping hole in our understanding of fundamental physics. In 1917, Einstein proposed the cosmological constant to explain a static universe. When observations proved that the universe was expanding, he cast this early form of dark energy aside. But recent observations described first-hand in this book show that the cosmological constant--or something just like it--dominates the universe's mass and energy budget and determines its fate and shape.Warned by Einstein's blunder, and contradicted by the initial results of a competing research team, Kirshner and his colleagues were reluctant to accept their own result. But, convinced by evidence built on their hard-earned understanding of exploding stars, they announced their conclusion that the universe is accelerating in February 1998. Other lines of inquiry and parallel supernova research now support a new synthesis of a cosmos dominated by dark energy but also containing several forms of dark matter. We live in an extravagant universe with a surprising number of essential ingredients: the real universe we measure is not the simplest one we could imagine.

Admission Assessment Exam Review


HESI - 2012
    Plus, it helps you identify areas of weakness so you can focus your study time. Sample problems and step-by-step examples with explanations in the math and physics sections show you how to work through each problem so you understand the steps it takes to complete the equation. Practice tests with answer keys for each topic - located in the appendices for quick access - help you assess your understanding of each topic and familiarize you with the types of questions you're likely to encounter on the actual exam. HESI Hints boxes offer valuable test-taking tips, as well as rationales, suggestions, examples, and reminders for specific topics.End-of-chapter review questions help you gauge your understanding of chapter content.A full-color layout and more illustrations in the life science chapters visually reinforce key concepts for better understanding.Expanded and updated content in each chapter ensures you're studying the most current content.Basic algebra review in the math section offers additional review and practice.Color-coded chapters help you quickly find specific topic sections.Helpful organizational features in each chapter include an introduction, key terms, chapter outline, and a bulleted chapter summary to help you focus your study.A glossary at the end of the text offers quick access to key terms and their definitions.

Periodic Tales: The Curious Lives of the Elements


Hugh Aldersey-Williams - 2011
    Like you, the elements have lives: personalities and attitudes, talents and shortcomings, stories rich with meaning. You may think of them as the inscrutable letters of the periodic table but you know them much better than you realise. Welcome to a dazzling tour through history and literature, science and art. Here you'll meet iron that rains from the heavens and noble gases that light the way to vice. You'll learn how lead can tell your future while zinc may one day line your coffin. You'll discover what connects the bones in your body with the Whitehouse in Washington, the glow of a streetlamp with the salt on your dinner table. From ancient civilisations to contemporary culture, from the oxygen of publicity to the phosphorus in your pee, the elements are near and far and all around us. Unlocking their astonishing secrets and colourful pasts, Periodic Tales will take you on a voyage of wonder and discovery, excitement and novelty, beauty and truth. Along the way, you'll find that their stories are our stories, and their lives are inextricable from our own.

Universe: The Definitive Visual Guide


Robert Dinwiddie - 2005
    High school & older.

Quantum Physics: What Everyone Needs to Know®


Michael G. Raymer - 2017
    However, once their predictions were compared to the results of experiments in the real world, it became clear that the principles of classical physics and mechanics were far from capable of explaining phenomena on the atomic scale. With this realization came the advent of quantum physics, one of the most important intellectual movements in human history. Today, quantum physics is everywhere: it explains how our computers work, how lasers transmit information across the Internet, and allows scientists to predict accurately the behavior of nearly every particle in nature. Its application continues to be fundamental in the investigation of the most expansive questions related to our world and the universe.However, while the field and principles of quantum physics are known to have nearly limitless applications, the fundamental reasons why this is the case are far less understood. In Quantum Physics: What Everyone Needs to Know, quantum physicist Michael G. Raymer distills the basic principles of such an abstract field, and addresses the many ways quantum physics is a key factor in today's science and beyond. The book tackles questions as broad as the meaning of quantum entanglement and as specific and timely as why governments worldwide are spending billions of dollars developing quantum technology research. Raymer's list of topics is diverse, and showcases the sheer range of questions and ideas in which quantum physics is involved. From applications like data encryption and quantum computing to principles and concepts like "quantum nonlocality" and Heisenberg's uncertainty principle, Quantum Physics: What Everyone Needs to Know is a wide-reaching introduction to a nearly ubiquitous scientific topic.