Sun Certified Programmer & Developer for Java 2 Study Guide (Exam 310-035 & 310-027)


Kathy Sierra - 2002
    More than 250 challenging practice questions have been completely revised to closely model the format, tone, topics, and difficulty of the real exam. An integrated study system based on proven pedagogy, exam coverage includes step-by-step exercises, special Exam Watch notes, On-the-Job elements, and Self Tests with in-depth answer explanations to help reinforce and teach practical skills.Praise for the author:"Finally A Java certification book that explains everything clearly. All you need to pass the exam is in this book."--Solveig Haugland, Technical Trainer and Former Sun Course Developer"Who better to write a Java study guide than Kathy Sierra, the reigning queen of Java instruction? Kathy Sierra has done it again--here is a study guide that almost guarantees you a certification "--James Cubeta, Systems Engineer, SGI"The thing I appreciate most about Kathy is her quest to make us all remember that we are teaching people and not just lecturing about Java. Her passion and desire for the highest quality education that meets the needs of the individual student is positively unparalleled at SunEd. Undoubtedly there are hundreds of students who have benefited from taking Kathy's classes."--Victor Peters, founder Next Step Education & Software Sun Certified Java Instructor"I want to thank Kathy for the EXCELLENT Study Guide. The book is well written, every concept is clearly explained using a real life example, and the book states what you specifically need to know for the exam. The way it's written, you feel that you're in a classroom and someone is actually teaching you the difficult concepts, but not in a dry, formal manner. The questions at the end of the chapters are also REALLY good, and I am sure they will help candidates pass the test. Watch out for this Wickedly Smart book."-Alfred Raouf, Web Solution Developer, Kemety.Net"The Sun Certification exam was certainly no walk in the park but Kathy's material allowed me to not only pass the exam, but Ace it "--Mary Whetsel, Sr. Technology Specialist, Application Strategy and Integration, The St. Paul Companies

Applied Linear Regression Models- 4th Edition with Student CD (McGraw Hill/Irwin Series: Operations and Decision Sciences)


Michael H. Kutner - 2003
    Cases, datasets, and examples allow for a more real-world perspective and explore relevant uses of regression techniques in business today.

Learn Python The Hard Way


Zed A. Shaw - 2010
    The title says it is the hard way to learn to writecode but it’s actually not. It’s the “hard” way only in that it’s the way people used to teach things. In this book youwill do something incredibly simple that all programmers actually do to learn a language: 1. Go through each exercise. 2. Type in each sample exactly. 3. Make it run.That’s it. This will be very difficult at first, but stick with it. If you go through this book, and do each exercise for1-2 hours a night, then you’ll have a good foundation for moving on to another book. You might not really learn“programming” from this book, but you will learn the foundation skills you need to start learning the language.This book’s job is to teach you the three most basic essential skills that a beginning programmer needs to know:Reading And Writing, Attention To Detail, Spotting Differences.

The Ethical Algorithm: The Science of Socially Aware Algorithm Design


Michael Kearns - 2019
    Algorithms have made our lives more efficient, more entertaining, and, sometimes, better informed. At the same time, complex algorithms are increasingly violating the basic rights of individual citizens. Allegedly anonymized datasets routinely leak our most sensitive personal information; statistical models for everything from mortgages to college admissions reflect racial and gender bias. Meanwhile, users manipulate algorithms to "game" search engines, spam filters, online reviewing services, and navigation apps.Understanding and improving the science behind the algorithms that run our lives is rapidly becoming one of the most pressing issues of this century. Traditional fixes, such as laws, regulations and watchdog groups, have proven woefully inadequate. Reporting from the cutting edge of scientific research, The Ethical Algorithm offers a new approach: a set of principled solutions based on the emerging and exciting science of socially aware algorithm design. Michael Kearns and Aaron Roth explain how we can better embed human principles into machine code - without halting the advance of data-driven scientific exploration. Weaving together innovative research with stories of citizens, scientists, and activists on the front lines, The Ethical Algorithm offers a compelling vision for a future, one in which we can better protect humans from the unintended impacts of algorithms while continuing to inspire wondrous advances in technology.

Spark: The Definitive Guide: Big Data Processing Made Simple


Bill Chambers - 2018
    With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals. You’ll explore the basic operations and common functions of Spark’s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Spark’s scalable machine-learning library. Get a gentle overview of big data and Spark Learn about DataFrames, SQL, and Datasets—Spark’s core APIs—through worked examples Dive into Spark’s low-level APIs, RDDs, and execution of SQL and DataFrames Understand how Spark runs on a cluster Debug, monitor, and tune Spark clusters and applications Learn the power of Structured Streaming, Spark’s stream-processing engine Learn how you can apply MLlib to a variety of problems, including classification or recommendation

Database Design for Mere Mortals: A Hands-On Guide to Relational Database Design


Michael J. Hernandez - 1996
    You d be up to your neck in normal forms before you even had a chance to wade. When Michael J. Hernandez needed a database design book to teach mere mortals like himself, there were none. So he began a personal quest to learn enough to write one. And he did.Now in its Second Edition, Database Design for Mere Mortals is a miracle for today s generation of database users who don t have the background -- or the time -- to learn database design the hard way. It s also a secret pleasure for working pros who are occasionally still trying to figure out what they were taught.Drawing on 13 years of database teaching experience, Hernandez has organized database design into several key principles that are surprisingly easy to understand and remember. He illuminates those principles using examples that are generic enough to help you with virtually any application.Hernandez s goals are simple. You ll learn how to create a sound database structure as easily as possible. You ll learn how to optimize your structure for efficiency and data integrity. You ll learn how to avoid problems like missing, incorrect, mismatched, or inaccurate data. You ll learn how to relate tables together to make it possible to get whatever answers you need in the future -- even if you haven t thought of the questions yet.If -- as is often the case -- you already have a database, Hernandez explains how to analyze it -- and leverage it. You ll learn how to identify new information requirements, determine new business rules that need to be applied, and apply them.Hernandez starts with an introduction to databases, relational databases, and the idea and objectives of database design. Next, you ll walk through the key elements of the database design process: establishing table structures and relationships, assigning primary keys, setting field specifications, and setting up views. Hernandez s extensive coverage of data integrity includes a full chapter on establishing business rules and using validation tables.Hernandez surveys bad design techniques in a chapter on what not to do -- and finally, helps you identify those rare instances when it makes sense to bend or even break the conventional rules of database design.There s plenty that s new in this edition. Hernandez has gone over his text and illustrations with a fine-tooth comb to improve their already impressive clarity. You ll find updates to reflect new advances in technology, including web database applications. There are expanded and improved discussions of nulls and many-to-many relationships; multivalued fields; primary keys; and SQL data type fields. There s a new Quick Reference database design flowchart. A new glossary. New review questions at the end of every chapter.Finally, it s worth mentioning what this book isn t. It isn t a guide to any specific database platform -- so you can use it whether you re running Access, SQL Server, or Oracle, MySQL or PostgreSQL. And it isn t an SQL guide. (If that s what you need, Michael J. Hernandez has also coauthored the superb SQL Queries for Mere Mortals). But if database design is what you need to learn, this book s worth its weight in gold. Bill CamardaBill Camarda is a consultant, writer, and web/multimedia content developer. His 15 books include Special Edition Using Word 2000 and Upgrading & Fixing Networks for Dummies, Second Edition.

Foundations of Statistical Natural Language Processing


Christopher D. Manning - 1999
    This foundational text is the first comprehensive introduction to statistical natural language processing (NLP) to appear. The book contains all the theory and algorithms needed for building NLP tools. It provides broad but rigorous coverage of mathematical and linguistic foundations, as well as detailed discussion of statistical methods, allowing students and researchers to construct their own implementations. The book covers collocation finding, word sense disambiguation, probabilistic parsing, information retrieval, and other applications.

Mastering Regular Expressions


Jeffrey E.F. Friedl - 1997
    They are now standard features in a wide range of languages and popular tools, including Perl, Python, Ruby, Java, VB.NET and C# (and any language using the .NET Framework), PHP, and MySQL.If you don't use regular expressions yet, you will discover in this book a whole new world of mastery over your data. If you already use them, you'll appreciate this book's unprecedented detail and breadth of coverage. If you think you know all you need to know about regularexpressions, this book is a stunning eye-opener.As this book shows, a command of regular expressions is an invaluable skill. Regular expressions allow you to code complex and subtle text processing that you never imagined could be automated. Regular expressions can save you time and aggravation. They can be used to craft elegant solutions to a wide range of problems. Once you've mastered regular expressions, they'll become an invaluable part of your toolkit. You will wonder how you ever got by without them.Yet despite their wide availability, flexibility, and unparalleled power, regular expressions are frequently underutilized. Yet what is power in the hands of an expert can be fraught with peril for the unwary. Mastering Regular Expressions will help you navigate the minefield to becoming an expert and help you optimize your use of regular expressions.Mastering Regular Expressions, Third Edition, now includes a full chapter devoted to PHP and its powerful and expressive suite of regular expression functions, in addition to enhanced PHP coverage in the central "core" chapters. Furthermore, this edition has been updated throughout to reflect advances in other languages, including expanded in-depth coverage of Sun's java.util.regex package, which has emerged as the standard Java regex implementation.Topics include:A comparison of features among different versions of many languages and toolsHow the regular expression engine worksOptimization (major savings available here!)Matching just what you want, but not what you don't wantSections and chapters on individual languagesWritten in the lucid, entertaining tone that makes a complex, dry topic become crystal-clear to programmers, and sprinkled with solutions to complex real-world problems, Mastering Regular Expressions, Third Edition offers a wealth information that you can put to immediateuse.Reviews of this new edition and the second edition: "There isn't a better (or more useful) book available on regular expressions."--Zak Greant, Managing Director, eZ Systems"A real tour-de-force of a book which not only covers the mechanics of regexes in extraordinary detail but also talks about efficiency and the use of regexes in Perl, Java, and .NET...If you use regular expressions as part of your professional work (even if you already have a good book on whatever language you're programming in) I would strongly recommend this book to you."--Dr. Chris Brown, Linux Format"The author does an outstanding job leading the reader from regexnovice to master. The book is extremely easy to read and chock full ofuseful and relevant examples...Regular expressions are valuable toolsthat every developer should have in their toolbox. Mastering RegularExpressions is the definitive guide to the subject, and an outstandingresource that belongs on every programmer's bookshelf. Ten out of TenHorseshoes."--Jason Menard, Java Ranch

Artificial Intelligence: A Modern Approach


Stuart Russell - 1994
    The long-anticipated revision of this best-selling text offers the most comprehensive, up-to-date introduction to the theory and practice of artificial intelligence. *NEW-Nontechnical learning material-Accompanies each part of the book. *NEW-The Internet as a sample application for intelligent systems-Added in several places including logical agents, planning, and natural language. *NEW-Increased coverage of material - Includes expanded coverage of: default reasoning and truth maintenance systems, including multi-agent/distributed AI and game theory; probabilistic approaches to learning including EM; more detailed descriptions of probabilistic inference algorithms. *NEW-Updated and expanded exercises-75% of the exercises are revised, with 100 new exercises. *NEW-On-line Java software. *Makes it easy for students to do projects on the web using intelligent agents. *A unified, agent-based approach to AI-Organizes the material around the task of building intelligent agents. *Comprehensive, up-to-date coverage-Includes a unified view of the field organized around the rational decision making pa

Probabilistic Graphical Models: Principles and Techniques


Daphne Koller - 2009
    The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.

Make Your Own Neural Network: An In-depth Visual Introduction For Beginners


Michael Taylor - 2017
    A step-by-step visual journey through the mathematics of neural networks, and making your own using Python and Tensorflow.

Doing Bayesian Data Analysis: A Tutorial Introduction with R and BUGS


John K. Kruschke - 2010
    Included are step-by-step instructions on how to carry out Bayesian data analyses.Download Link : readbux.com/download?i=0124058884            0124058884 Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan PDF by John Kruschke

Lean Analytics: Use Data to Build a Better Startup Faster


Alistair Croll - 2013
    Lean Analytics steers you in the right direction.This book shows you how to validate your initial idea, find the right customers, decide what to build, how to monetize your business, and how to spread the word. Packed with more than thirty case studies and insights from over a hundred business experts, Lean Analytics provides you with hard-won, real-world information no entrepreneur can afford to go without.Understand Lean Startup, analytics fundamentals, and the data-driven mindsetLook at six sample business models and how they map to new ventures of all sizesFind the One Metric That Matters to youLearn how to draw a line in the sand, so you’ll know it’s time to move forwardApply Lean Analytics principles to large enterprises and established products

SQL Cookbook


Anthony Molinaro - 2005
    You'd like to learn how to do more work with SQL inside the database before pushing data across the network to your applications. You'd like to take your SQL skills to the next level.Let's face it, SQL is a deceptively simple language to learn, and many database developers never go far beyond the simple statement: SELECT columns FROM table WHERE conditions. But there is so much more you can do with the language. In the SQL Cookbook, experienced SQL developer Anthony Molinaro shares his favorite SQL techniques and features. You'll learn about:Window functions, arguably the most significant enhancement to SQL in the past decade. If you're not using these, you're missing outPowerful, database-specific features such as SQL Server's PIVOT and UNPIVOT operators, Oracle's MODEL clause, and PostgreSQL's very useful GENERATE_SERIES functionPivoting rows into columns, reverse-pivoting columns into rows, using pivoting to facilitate inter-row calculations, and double-pivoting a result setBucketization, and why you should never use that term in Brooklyn.How to create histograms, summarize data into buckets, perform aggregations over a moving range of values, generate running-totals and subtotals, and other advanced, data warehousing techniquesThe technique of walking a string, which allows you to use SQL to parse through the characters, words, or delimited elements of a stringWritten in O'Reilly's popular Problem/Solution/Discussion style, the SQL Cookbook is sure to please. Anthony's credo is: When it comes down to it, we all go to work, we all have bills to pay, and we all want to go home at a reasonable time and enjoy what's still available of our days. The SQL Cookbook moves quickly from problem to solution, saving you time each step of the way.

Data Mining: Concepts and Techniques (The Morgan Kaufmann Series in Data Management Systems)


Jiawei Han - 2000
    Not only are all of our business, scientific, and government transactions now computerized, but the widespread use of digital cameras, publication tools, and bar codes also generate data. On the collection side, scanned text and image platforms, satellite remote sensing systems, and the World Wide Web have flooded us with a tremendous amount of data. This explosive growth has generated an even more urgent need for new techniques and automated tools that can help us transform this data into useful information and knowledge.Like the first edition, voted the most popular data mining book by KD Nuggets readers, this book explores concepts and techniques for the discovery of patterns hidden in large data sets, focusing on issues relating to their feasibility, usefulness, effectiveness, and scalability. However, since the publication of the first edition, great progress has been made in the development of new data mining methods, systems, and applications. This new edition substantially enhances the first edition, and new chapters have been added to address recent developments on mining complex types of data- including stream data, sequence data, graph structured data, social network data, and multi-relational data.A comprehensive, practical look at the concepts and techniques you need to know to get the most out of real business dataUpdates that incorporate input from readers, changes in the field, and more material on statistics and machine learningDozens of algorithms and implementation examples, all in easily understood pseudo-code and suitable for use in real-world, large-scale data mining projectsComplete classroom support for instructors at www.mkp.com/datamining2e companion site