Book picks similar to
Data Structure and Algorithmic Thinking with Python by Narasimha Karumanchi
computer-science
python
algorithms
technology
Regular Expression Pocket Reference: Regular Expressions for Perl, Ruby, PHP, Python, C, Java and .NET
Tony Stubblebine - 2007
Ideal as a quick reference, Regular Expression Pocket Reference covers the regular expression APIs for Perl 5.8, Ruby (including some upcoming 1.9 features), Java, PHP, .NET and C#, Python, vi, JavaScript, and the PCRE regular expression libraries. This concise and easy-to-use reference puts a very powerful tool for manipulating text and data right at your fingertips. Composed of a mixture of symbols and text, regular expressions can be an outlet for creativity, for brilliant programming, and for the elegant solution. Regular Expression Pocket Reference offers an introduction to regular expressions, pattern matching, metacharacters, modes and constructs, and then provides separate sections for each of the language APIs, with complete regex listings including:Supported metacharacters for each language API Regular expression classes and interfaces for Ruby, Java, .NET, and C# Regular expression operators for Perl 5.8 Regular expression module objects and functions for Python Pattern-matching functions for PHP and the vi editor Pattern-matching methods and objects for JavaScript Unicode Support for each of the languages With plenty of examples and other resources, Regular Expression Pocket Reference summarizes the complex rules for performing this critical text-processing function, and presents this often-confusing topic in a friendly and well-organized format. This guide makes an ideal on-the-job companion.
The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling
Ralph Kimball - 1996
Here is a complete library of dimensional modeling techniques-- the most comprehensive collection ever written. Greatly expanded to cover both basic and advanced techniques for optimizing data warehouse design, this second edition to Ralph Kimball's classic guide is more than sixty percent updated.The authors begin with fundamental design recommendations and gradually progress step-by-step through increasingly complex scenarios. Clear-cut guidelines for designing dimensional models are illustrated using real-world data warehouse case studies drawn from a variety of business application areas and industries, including:* Retail sales and e-commerce* Inventory management* Procurement* Order management* Customer relationship management (CRM)* Human resources management* Accounting* Financial services* Telecommunications and utilities* Education* Transportation* Health care and insuranceBy the end of the book, you will have mastered the full range of powerful techniques for designing dimensional databases that are easy to understand and provide fast query response. You will also learn how to create an architected framework that integrates the distributed data warehouse using standardized dimensions and facts.This book is also available as part of the Kimball's Data Warehouse Toolkit Classics Box Set (ISBN: 9780470479575) with the following 3 books:The Data Warehouse Toolkit, 2nd Edition (9780471200246)The Data Warehouse Lifecycle Toolkit, 2nd Edition (9780470149775)The Data Warehouse ETL Toolkit (9780764567575)