Book picks similar to
Regular Polytopes by H.S.M. Coxeter
mathematics
geometry
math
non-fiction
A Course of Pure Mathematics
G.H. Hardy - 1908
Since its publication in 1908, it has been a classic work to which successive generations of budding mathematicians have turned at the beginning of their undergraduate courses. In its pages, Hardy combines the enthusiasm of a missionary with the rigor of a purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit.
Euler: The Master of Us All
William Dunham - 1999
This book examines the huge scope of mathematical areas explored and developed by Euler, which includes number theory, combinatorics, geometry, complex variables and many more. The information known to Euler over 300 years ago is discussed, and many of his advances are reconstructed. Readers will be left in no doubt about the brilliance and pervasive influence of Euler's work.
Elementary Linear Algebra with Applications
Howard Anton - 1973
It proceeds from familiar concepts to the unfamiliar, from the concrete to the abstract. Readers consistently praise this outstanding text for its expository style and clarity of presentation. The applications version features a wide variety of interesting, contemporary applications. Clear, accessible, step-by-step explanations make the material crystal clear. Established the intricate thread of relationships between systems of equations, matrices, determinants, vectors, linear transformations and eigenvalues.
Fractals: A Very Short Introduction
Kenneth Falconer - 2013
In this Very Short Introduction, Kenneth Falconer explains the basic concepts of fractal geometry, which produced a revolution in our mathematical understanding of patterns in the twentieth century, and explores the wide range of applications in science, and in aspects of economics.About the Series: Oxford's Very Short Introductions series offers concise and original introductions to a wide range of subjects--from Islam to Sociology, Politics to Classics, Literary Theory to History, and Archaeology to the Bible. Not simply a textbook of definitions, each volume in this series provides trenchant and provocative--yet always balanced and complete--discussions of the central issues in a given discipline or field. Every Very Short Introduction gives a readable evolution of the subject in question, demonstrating how the subject has developed and how it has influenced society. Eventually, the series will encompass every major academic discipline, offering all students an accessible and abundant reference library. Whatever the area of study that one deems important or appealing, whatever the topic that fascinates the general reader, the Very Short Introductions series has a handy and affordable guide that will likely prove indispensable.
On Numbers and Games
John H. Conway - 1976
Originally written to define the relation between the theories of transfinite numbers and mathematical games, the resulting work is a mathematically sophisticated but eminently enjoyable guide to game theory. By defining numbers as the strengths of positions in certain games, the author arrives at a new class, the surreal numbers, that includes both real numbers and ordinal numbers. These surreal numbers are applied in the author's mathematical analysis of game strategies. The additions to the Second Edition present recent developments in the area of mathematical game theory, with a concentration on surreal numbers and the additive theory of partizan games.
The Great Book of Riddles: 250 Magnificent Riddles, Puzzles and Brain Teasers
Peter Keyne - 2014
There are classical logic puzzles, lateral thinking puzzles, “who am I?” riddles, mathematical brain teasers, word ladders, ditloids, and a large selection of illustrated pen and paper, coins, cups, and toothpicks puzzles (please view the preview of this book for a full listing). This is the first time a collection of such breadth has been compiled and formatted especially for Kindle devices. The puzzles have been carefully organized into 25 chapters, and each question is hyperlinked to its solution, to provide utmost ease of navigation. Alongside the world’s most famous riddles, are some lesser known gems, and some brand new puzzles, in print here for the first time. Our aim was to create a definitive compendium of riddles and puzzles to bring enjoyment to people of all ages. We hope you will enjoy unraveling them as much as we enjoyed creating and editing them. Here are a handful of sample riddles: Outside the Box Riddles: You need to divide a round birthday cake into eight pieces, so each of your guests will have something to eat. How can you do this by making only three straight cuts with a knife, and without moving any of the pieces? The king’s two bodyguards developed an ingenious method for assuring the king’s safety. With the king standing between them, they would face in opposite directions; one looking to the west and the other to the east, but at the same time, and without the use of any reflective surfaces, they would both be able to observe the king clearly. How was this possible? Pure Logic Riddles: There are two glasses. One contains water, and the other contains an equal quantity of wine. A teaspoon of water is removed and mixed into the glass of wine. A teaspoon of the wine-water mixture is then removed and mixed into the glass of water. Which of the mixtures is now purer? The sorcerer’s tower was enchanted in such a way that it was able to build itself. Bricks, slates, tiles, and panes of glass, all flew to it of their own accord and danced into position. The tower doubled in size every day until after 100 days it reached a height that provided fine views over the entire realm. How many days did the tower take to reach half its full height? Lateral Thinking Puzzles: Five men are going to church. It starts to rain, and four of the men begin to run. When they arrive at the church, the four men who ran are soaking wet, whereas the fifth man, who didn’t run, is completely dry. How is this possible? Think Twice Riddles: If you are running a race, and you overtake the person in second place, what place do you move into? Word Riddles: SOS is read the same forwards, backwards, and even upside-down. What four-letter word also shares these properties? Number Puzzlers: How many letters are there in the answer to this question? You have an opportunity to buy a hen. In fact, you have been offered a choice between two quite remarkable animals. One of the hens produces six dozen dozen eggs per month, and the other produces a half dozen dozen. Admittedly, both seem impressive. Does it matter which hen you choose? Traditional Poetic Riddles: Five creatures cross a field of snow; But leave a single track behind Whose loops and bows are soon, I know, Unravelled by the mind. Coins, Cups, and Toothpicks Illustrated Riddles: A coin is dropped into an empty bottle and a cork is then inserted in the neck of the bottle. How is it possible to remove the coin without taking out the cork, or breaking the bottle?
Mental Math: Tricks To Become A Human Calculator
Abhishek V.R. - 2017
Just read this till the end You don’t have to buy this book. Just read this till end & you will learn something that will change the way you do math forever. Warning: I am revealing this secret only to the first set of readers who will buy this book & plan to put this secret back inside the book once I have enough sales. So read this until the very end while you still can.School taught you the wrong way to do mathThe way you were taught to do math, uses a lot of working memory. Working memory is the short term memory used to complete a mental task. You struggle because trying to do mental math the way you were taught in school, overloads your working memory. Let me show you what I mean with an example:Try to multiply the 73201 x 3. To do this you multiply the following:1 x 3 =0 x 3 =2 x 3 =3 x 3 =7 x 3 =This wasn’t hard, & it might have taken you just seconds to multiply the individual numbers. However, to get the final answer, you need to remember every single digit you calculated to put them back together. It takes effort to get the answer because you spend time trying to recall the numbers you already calculated. Math would be easier to do in your head if you didn’t have to remember so many numbers. Imagine when you tried to multiply 73201 x 3, if you could have come up with the answer, in the time it took you to multiply the individual numbers. Wouldn’t you have solved the problem faster than the time it would have taken you to punch in the numbers inside a calculator? Do the opposite of what you were taught in schoolThe secret of doing mental math is to calculate from left to right instead of from right to left. This is the opposite of what you were taught in school. This works so well because it frees your working memory almost completely. It is called the LR Method where LR stands for Left to Right.Lets try to do the earlier example where we multiplied 73201 x 3. This time multiply from left to right, so we get:7 x 3 = 213 x 3 = 93 x 2 = 60 x 3 = 03 x 1 = 3Notice that you started to call out the answer before you even finished the whole multiplication problem. You don’t have to remember a thing to recall & use later. So you end up doing math a lot faster. The Smart ChoiceYou could use what you learnt & apply it to solve math in the future. This might not be easy, because we just scratched the surface. I've already done the work for you. Why try to reinvent the wheel, when there is already a proven & tested system you can immediately apply. This book was first available in video format & has helped 10,000+ students from 132 countries. It is available at ofpad.com/mathcourse to enroll. This book was written to reach students who consume the information in text format. You can use the simple techniques in this book to do math faster than a calculator effortlessly in your head, even if you have no aptitude for math to begin with.Imagine waking up tomorrow being able to do lightning fast math in your head. Your family & friends will look at you like you are some kind of a genius. Since calculations are done in your head, you will acquire better mental habits in the process. So you will not just look like a genius. You will actually be one. Limited Time BonusWeekly training delivered through email for $97 is available for free as a bonus at the end of this book for the first set of readers. Once we have enough readers, this bonus will be charged $97. Why Price Is So LowThis book is priced at a ridiculous discount only to get our first set of readers. When we have enough readers the price will go up.
Abstract Algebra
David S. Dummit - 1900
This book is designed to give the reader insight into the power and beauty that accrues from a rich interplay between different areas of mathematics. The book carefully develops the theory of different algebraic structures, beginning from basic definitions to some in-depth results, using numerous examples and exercises to aid the reader's understanding. In this way, readers gain an appreciation for how mathematical structures and their interplay lead to powerful results and insights in a number of different settings. * The emphasis throughout has been to motivate the introduction and development of important algebraic concepts using as many examples as possible.
Calculus
Gilbert Strang - 1991
The author has a direct style. His book presents detailed and intensive explanations. Many diagrams and key examples are used to aid understanding, as well as the application of calculus to physics and engineering and economics. The text is well organized, and it covers single variable and multivariable calculus in depth. An instructor's manual and student guide are available online at http: //ocw.mit.edu/ans7870/resources/Strang/....
Basic Category Theory for Computer Scientists
Benjamin C. Pierce - 1991
Assuming a minimum of mathematical preparation, Basic Category Theory for Computer Scientists provides a straightforward presentation of the basic constructions and terminology of category theory, including limits, functors, natural transformations, adjoints, and cartesian closed categories. Four case studies illustrate applications of category theory to programming language design, semantics, and the solution of recursive domain equations. A brief literature survey offers suggestions for further study in more advanced texts.
The History of the Calculus and Its Conceptual Development
Carl B. Boyer - 1959
Early beginnings in antiquity, medieval contributions, and a century of anticipation lead up to a consideration of Newton and Leibniz, the period of indecison that followed them, and the final rigorous formulation that we know today.
Introduction to Real Analysis
Robert G. Bartle - 1982
Therefore, this book provides the fundamental concepts and techniques of real analysis for readers in all of these areas. It helps one develop the ability to think deductively, analyze mathematical situations and extend ideas to a new context. Like the first two editions, this edition maintains the same spirit and user-friendly approach with some streamlined arguments, a few new examples, rearranged topics, and a new chapter on the Generalized Riemann Integral.
Visual Complex Analysis
Tristan Needham - 1997
Aimed at undergraduate students in mathematics, physics, and engineering, the book's intuitive explanations, lack ofadvanced prerequisites, and consciously user-friendly prose style will help students to master the subject more readily than was previously possible. The key to this is the book's use of new geometric arguments in place of the standard calculational ones. These geometric arguments are communicatedwith the aid of hundreds of diagrams of a standard seldom encountered in mathematical works. A new approach to a classical topic, this work will be of interest to students in mathematics, physics, and engineering, as well as to professionals in these fields.
Impossibility: The Limits of Science and the Science of Limits
John D. Barrow - 1998
Astronomer John Barrow takes an intriguing look at the limits of science, who argues that there are things that are ultimately unknowable, undoable, or unreachable.
Computational Complexity
Sanjeev Arora - 2007
Requiring essentially no background apart from mathematical maturity, the book can be used as a reference for self-study for anyone interested in complexity, including physicists, mathematicians, and other scientists, as well as a textbook for a variety of courses and seminars. More than 300 exercises are included with a selected hint set.