Concrete Mathematics: A Foundation for Computer Science


Ronald L. Graham - 1988
    "More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems."

Introduction to Graph Theory


Douglas B. West - 1995
    Verification that algorithms work is emphasized more than their complexity. An effective use of examples, and huge number of interesting exercises, demonstrate the topics of trees and distance, matchings and factors, connectivity and paths, graph coloring, edges and cycles, and planar graphs. For those who need to learn to make coherent arguments in the fields of mathematics and computer science.

Deep Learning


Ian Goodfellow - 2016
    Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference


Cameron Davidson-Pilon - 2014
    However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

Robot Building for Beginners


David Cook - 2002
    Not only does author David Cook assist you in understanding the component parts of robot development, but he also presents valuable techniques that prepare you to make new discoveries on your own.Cook begins with the anatomy of a homemade robot and gives you the best advice on how to proceed successfully. General sources for tools and parts are provided in a consolidated list, and specific parts are recommended throughout the book. Also, basic safety precautions and essential measuring and numbering systems are promoted throughout.Specific tools and parts covered include digital multimeters, motors, wheels, resistors, LEDs, photoresistors, transistors, chips, gears, nut drivers, batteries, and more. "Robot Building for Beginners" is an inspiring book that provides an essential base of practical knowledge for anyone getting started in amateur robotics.

Practical SQL: A Beginner's Guide to Storytelling with Data


Anthony DeBarros - 2022
    An approachable guide to programming in SQL (Structured Query Language) that will teach even beginning programmers how to build powerful databases and analyze data to find meaningful information.Practical SQL is an approachable and fast-paced guide to SQL (Structured Query Language) written by longtime professional journalist Anthony DeBarros. SQL is the primary tool that programmers, web developers, researchers, journalists, and others use to explore data in a database. DeBarros focuses on using SQL to find the story in data, with the aid of the popular open-source database PostgreSQL and the pgAdmin interface.This thoroughly revised second edition includes a new chapter describing how to set up PostgreSQL and more extensive discussion of pgAdmin's best features. The author has also added a chapter on the JSON data format that shows readers how to store and query JSON data. DeBarros has also updated the data in the book throughout, added coverage of additional topics, and perfected the book's examples.Readers love DeBarros's use of exercises and real-world examples that demonstrate how to:- Create databases and related tables using your own data - Correctly define data typesAggregate, sort, and filter data to find patterns - Clean their data and transfer data as text files - Create advanced queries and automate tasksThis book uses PostgreSQL, but the SQL syntax is applicable to many database applications, including Microsoft SQL Server and MySQL.

A Practical Guide to Linux Commands, Editors, and Shell Programming


Mark G. Sobell - 2005
    The book is a complete revision of the commands section of Sobell's Practical Guide to Linux - a proven best-seller. The book is Linux distribution and release agnostic. It will appeal to users of ALL Linux distributions. Superior examples make this book the the best option on the market! System administrators, software developers, quality assurance engineers and others working on a Linux system need to work from the command line in order to be effective. Linux is famous for its huge number of command line utility programs, and the programs themselves are famous for their large numbers of options, switches, and configuration files. But the truth is that users will only use a limited (but still significant) number of these utilities on a recurring basis, and then only with a subset of the most important and useful options, switches and configuration files. This book cuts through all the noise and shows them which utilities are most useful, and which options most important. And it contains examples, lot's and lot's of examples. programmability. Utilities are designed, by default, to work wtih other utilities within shell programs as a way of automating system tasks. This book contains a superb introduction to Linux shell programming. And since shell programmers need to write their programs in text editors, this book covers the two most popular ones: vi and emacs.

BRS Gross Anatomy


Kyung Won Chung - 1988
    Written in a concise, bulleted outline format, this well-illustrated text offers 500 USMLE-style review questions, answers, and explanations and features comprehensive content and upgraded USMLE Step 1 information.

Machine Learning


Tom M. Mitchell - 1986
    Mitchell covers the field of machine learning, the study of algorithms that allow computer programs to automatically improve through experience and that automatically infer general laws from specific data.

Probability Theory: The Logic of Science


E.T. Jaynes - 1999
    It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.

Cope's Early Diagnosis of the Acute Abdomen


William Silen - 1972
    Despite its relatively narrow focus, it is chock full of the pearls of clinical wisdom that students and practitioners treasure, and many of these lessons apply to medicine in general. The book was well characterized by a reviewer of an earlier edition for The New England Journal of Medicine: If only one book about surgery could be made available to physicians from all specialties, it should probably be Silen's recent revision of Cope's Early Diagnosis of the Acute Abdomen. Since the book first appeared more than 30 years ago, it has remained the classic treatise on the initial approach to abdominal pain. Because acute, severe abdominal pain is still a common problem whose misdiagnosis can result in quick death, each generation of beginning physicians is faced with the urgency of learning to make a diagnosis in this high anxiety situation and they appreciate the wise, humane, precisely detailed guidance offered by Cope and Silen. For the 21st Edition, Dr. Silen has again updated the text in a respectful but significant way. He has strengthened its emphasis on pitfalls in the interpretation of CT and ultrasound scans, on misadventures caused by over-reliance on blood tests and radiographs, and on careful history-taking to avoid the costs of inappropriate lab tests. He has also reviewed the data from a randomized clinical trial indicating that patients should receive adequate analgesia while awaiting a definitive diagnosis, a dictum that is contrary to traditional teaching

Cracking the Coding Interview: 150 Programming Questions and Solutions


Gayle Laakmann McDowell - 2008
    This is a deeply technical book and focuses on the software engineering skills to ace your interview. The book is over 500 pages and includes 150 programming interview questions and answers, as well as other advice.The full list of topics are as follows:The Interview ProcessThis section offers an overview on questions are selected and how you will be evaluated. What happens when you get a question wrong? When should you start preparing, and how? What language should you use? All these questions and more are answered.Behind the ScenesLearn what happens behind the scenes during your interview, how decisions really get made, who you interview with, and what they ask you. Companies covered include Google, Amazon, Yahoo, Microsoft, Apple and Facebook.Special SituationsThis section explains the process for experience candidates, Program Managers, Dev Managers, Testers / SDETs, and more. Learn what your interviewers are looking for and how much code you need to know.Before the InterviewIn order to ace the interview, you first need to get an interview. This section describes what a software engineer's resume should look like and what you should be doing well before your interview.Behavioral PreparationAlthough most of a software engineering interview will be technical, behavioral questions matter too. This section covers how to prepare for behavioral questions and how to give strong, structured responses.Technical Questions (+ 5 Algorithm Approaches)This section covers how to prepare for technical questions (without wasting your time) and teaches actionable ways to solve the trickiest algorithm problems. It also teaches you what exactly "good coding" is when it comes to an interview.150 Programming Questions and AnswersThis section forms the bulk of the book. Each section opens with a discussion of the core knowledge and strategies to tackle this type of question, diving into exactly how you break down and solve it. Topics covered include• Arrays and Strings• Linked Lists• Stacks and Queues• Trees and Graphs• Bit Manipulation• Brain Teasers• Mathematics and Probability• Object-Oriented Design• Recursion and Dynamic Programming• Sorting and Searching• Scalability and Memory Limits• Testing• C and C++• Java• Databases• Threads and LocksFor the widest degree of readability, the solutions are almost entirely written with Java (with the exception of C / C++ questions). A link is provided with the book so that you can download, compile, and play with the solutions yourself.Changes from the Fourth Edition: The fifth edition includes over 200 pages of new content, bringing the book from 300 pages to over 500 pages. Major revisions were done to almost every solution, including a number of alternate solutions added. The introductory chapters were massively expanded, as were the opening of each of the chapters under Technical Questions. In addition, 24 new questions were added.Cracking the Coding Interview, Fifth Edition is the most expansive, detailed guide on how to ace your software development / programming interviews.

Pro Git


Scott Chacon - 2009
    It took the open source world by storm since its inception in 2005, and is used by small development shops and giants like Google, Red Hat, and IBM, and of course many open source projects.A book by Git experts to turn you into a Git expert. Introduces the world of distributed version control Shows how to build a Git development workflow.

Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

Essential Environment: The Science Behind the Stories


Jay Withgott - 2011
    Jay Withgott and new co-author Matt Laposata present the latest coverage of environmental science and introduce new FAQ sections to address common student misconceptions. Note: This is the standalone book if you want the book/access card order the ISBN below: 0321752546 / 9780321752543 Essential Environment: The Science behind the Stories Plus MasteringEnvironmentalScience with eText -- Access Card Package Package consists of: 0321752902 / 9780321752901 Essential Environment: The Science behind the Stories 0321754077 / 9780321754073 MasteringEnvironmentalScience with Pearson eText -- Valuepack Access Card -- Essential Environment: The Science behind the Stories (ME component) "