Introductory Linear Algebra: An Applied First Course
Bernard Kolman - 1988
Calculus is not a prerequisite, although examples and exercises using very basic calculus are included (labeled Calculus Required.) The most technology-friendly text on the market, Introductory Linear Algebra is also the most flexible. By omitting certain sections, instructors can cover the essentials of linear algebra (including eigenvalues and eigenvectors), to show how the computer is used, and to introduce applications of linear algebra in a one-semester course.
Field and Wave Electromagnetics
David K. Cheng - 1982
These include applications drawn from important new areas of technology such as optical fibers, radome design, satellite communication, and microstrip lines. There is also added coverage of several new topics, including Hall effect, radar equation and scattering cross section, transients in transmission lines, waveguides and circular cavity resonators, wave propagation in the ionosphere, and helical antennas. New exercises, new problems, and many worked-out examples make this complex material more accessible to students.
Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems
Arno Smets - 2016
The book is also ideal for university and third-level physics or engineering courses on solar photovoltaics, with exercises to check students' understanding and reinforce learning. It is the perfect companion to the Massive Open Online Course (MOOC) on Solar Energy (DelftX, ET.3034TU) presented by co-author Arno Smets. The course is available in English on the nonprofit open source edX.org platform, and in Arabic on edraak.org. Over 100,000 students have already registered for these MOOCs.
Communication Electronics
Louis E. Frenzel - 1989
In addition, it discusses antennas and microwave techniques at a technician level and covers data communication techniques (modems, local area networks, fiber optics, satellite communication) and advanced applications (cellular telephones, facsimile and radar). The work is suitable for courses in Communications Technology.
Physics, Volume 1
Robert Resnick - 1966
The Fourth Edition of volumes 1 and 2 is concerned with mechanics and E&M/Optics. New features include: expanded coverage of classic physics topics, substantial increases in the number of in-text examples which reinforce text exposition, the latest pedagogical and technical advances in the field, numerical analysis, computer-generated graphics, computer projects and much more.
Basic Engineering Circuit Analysis
J. David Irwin - 1984
Now in a new Ninth Edition, this reader-friendly book has been completely revised and improved to ensure that the learning experience is enhanced. It's built on the strength of Irwin's problem-solving methodology, providing readers with a strong foundation as they advance in the field.
Principles of Physics
David Halliday - 2010
A number of the key figures in the new edition are revised to provide a more inviting and informative treatment. The figures are broken into component parts with supporting commentary so that they can more readily see the key ideas. Material from The Flying Circus is incorporated into the chapter opener puzzlers, sample problems, examples and end-of-chapter problems to make the subject more engaging. Checkpoints enable them to check their understanding of a question with some reasoning based on the narrative or sample problem they just read. Sample Problems also demonstrate how engineers can solve problems with reasoned solutions.
Introductory Circuit Analysis
Robert L. Boylestad - 1968
Features exceptionally clear explanations and descriptions, step-by-step examples, more than 50 practical applications, over 2000 easy-to-challenging practice problems, and comprehensive coverage of essentials. PSpice, OrCAd version 9.2 Lite Edition, Multisims 2001 version of Electronics Workbench, and MathCad software references and examples are used throughout. Computer programs (C++, BASIC and PSpice) are printed in color, as they run, at the point in the book where they are discussed. Current and Voltage. Resistance. Ohm's Law, Power, and Energy. Series Circuits. Parallel Circuits. Series-Parallel Networks. Methods of Analysis & Selected Topics. Network Theorems. Capacitors. Magnetic Circuits. Inductors. Sinusodial Alternating Waveforms. The Basic Elements and Phasors. Series and Parallel ac Circuits. Series-Parallel ac Networks. Methods of Analysis and Related Topics. Network Theorems (ac). Power (ac). Resonance. Transformers. Polyphase Systems. Decibels, Filters, and Bode Points. Pulse Waveforms and the R-C Response. Nonsinusodial Circuits. System Analysis: An Introduction. For those working in electronic technology.
Switchgear Protection And Power Systems (Theory, Practice & Solved Problems)
Sunil S. Rao
Switchgear Protection And Power Systems: Theory, Practice & Solved Problems Book Description
The 8088 and 8086 Microprocessors: Programming, Interfacing, Software, Hardware, and Applications
Walter A. Triebel - 1991
This volume offers thorough, balanced, and practical coverage of both software and hardware topics. Develops basic concepts using the 8088 and 8086 microprocessors, but the 32-bit version of the 80x86 family is also discussed. Examines how to assemble, run, and debug programs, and how to build, test, and troubleshoot interface circuits. Provides detailed coverage of floating-point processing and the single instruction multiple data (DIMD) processing capability of the advanced Pentium processor. Includes added material on number systems, logic functions and operations, conversion between number systems, and addition/subtraction of binary numbers. Includes new advanced material such as floating Point Architecture and Instructions, Multimedia (MMX) Architecture and Instructions, and the hardware and hardware architecture of the Pentium 3 and Pentium 4 processors. Covers the Intel architecture microprocessor families: 8088, 8086, 80286, 80386, 80486, and the latest Pentium(R) processors. Illustrates commands of the DEBUG program and how to assemble, disassemble, load, save, execute, and debug programs on the IBM PC. Introduces the contents of the 8088's instruction set. Explores practical implementation techniques, covering the use of latches, transceivers, buffers, and programmable logic devices in the memory and I/O interfaces of the microcomputer system. A valuable handbook for self-study in learning microprocessors, for electrical engineers, electronic technicians, and all computer programmers.