Book picks similar to
The Data Science Handbook: Advice and Insights from 25 Amazing Data Scientists by Carl Shan
data-science
data
business
science
The Fourth Paradigm: Data-Intensive Scientific Discovery
Tony Hey - 2009
Increasingly, scientific breakthroughs will be powered by advanced computing capabilities that help researchers manipulate and explore massive datasets. The speed at which any given scientific discipline advances will depend on how well its researchers collaborate with one another, and with technologists, in areas of eScience such as databases, workflow management, visualization, and cloud-computing technologies. This collection of essays expands on the vision of pioneering computer scientist Jim Gray for a new, fourth paradigm of discovery based on data-intensive science and offers insights into how it can be fully realized.
Introduction to Data Mining
Vipin Kumar - 2005
Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms.
Machine Learning: The Art and Science of Algorithms That Make Sense of Data
Peter Flach - 2012
Peter Flach's clear, example-based approach begins by discussing how a spam filter works, which gives an immediate introduction to machine learning in action, with a minimum of technical fuss. Flach provides case studies of increasing complexity and variety with well-chosen examples and illustrations throughout. He covers a wide range of logical, geometric and statistical models and state-of-the-art topics such as matrix factorisation and ROC analysis. Particular attention is paid to the central role played by features. The use of established terminology is balanced with the introduction of new and useful concepts, and summaries of relevant background material are provided with pointers for revision if necessary. These features ensure Machine Learning will set a new standard as an introductory textbook.
Prediction Machines: The Simple Economics of Artificial Intelligence
Ajay Agrawal - 2018
But facing the sea change that AI will bring can be paralyzing. How should companies set strategies, governments design policies, and people plan their lives for a world so different from what we know? In the face of such uncertainty, many analysts either cower in fear or predict an impossibly sunny future.But in Prediction Machines, three eminent economists recast the rise of AI as a drop in the cost of prediction. With this single, masterful stroke, they lift the curtain on the AI-is-magic hype and show how basic tools from economics provide clarity about the AI revolution and a basis for action by CEOs, managers, policy makers, investors, and entrepreneurs.When AI is framed as cheap prediction, its extraordinary potential becomes clear:
Prediction is at the heart of making decisions under uncertainty. Our businesses and personal lives are riddled with such decisions.
Prediction tools increase productivity--operating machines, handling documents, communicating with customers.
Uncertainty constrains strategy. Better prediction creates opportunities for new business structures and strategies to compete.
Penetrating, fun, and always insightful and practical, Prediction Machines follows its inescapable logic to explain how to navigate the changes on the horizon. The impact of AI will be profound, but the economic framework for understanding it is surprisingly simple.
Confident Data Skills: Master the Fundamentals of Working with Data and Supercharge Your Career
Kirill Eremenko - 2018
From entertainment to politics, from technology to advertising and from science to the business world, understanding and using data is now one of the most transferable and transferable skills out there. Learning how to work with data may seem intimidating or difficult but with
Confident Data Skills
you will be able to master the fundamentals and supercharge your professional abilities. This essential book covers data mining, preparing data, analysing data, communicating data, financial modelling, visualizing insights and presenting data through film making and dynamic simulations.In-depth international case studies from a wide range of organizations, including Netflix, LinkedIn, Goodreads, Deep Blue, Alpha Go and Mike's Hard Lemonade Co. show successful data techniques in practice and inspire you to turn knowledge into innovation.
Confident Data Skills
also provides insightful guidance on how you can use data skills to enhance your employability and improve how your industry or company works through your data skills. Expert author and instructor, Kirill Eremenko, is committed to making the complex simple and inspiring you to have the confidence to develop an understanding, adeptness and love of data.
Click Here to Kill Everybody: Security and Survival in a Hyper-connected World
Bruce Schneier - 2019
Although this computerized future, often called the Internet of Things, carries enormous potential, best- selling author Bruce Schneier argues that catastrophe awaits in its new vulnerabilities and dangers. Forget data theft; cutting- edge digital attackers can now literally crash your car, pacemaker, and home security system, as well as everyone else’s.In Click Here to Kill Everybody, Schneier “sets out detailed solutions that should be required reading for politicians across the world” (Financial Times). From principles for a more resilient Internet of Things to a recipe for sane government oversight, Schneier’s vision is required reading for anyone invested in human flourishing.“Sober, lucid and often wise in diagnosing how the security challenges posed by the expanding Internet came about, and in proposing what should (but probably won’t) be done about them.” — Nature
The Game Maker's Apprentice: Game Development for Beginners
Jacob Habgood - 2006
This book covers a range of genres, including action, adventure, and puzzle games complete with professional quality sound effects and visuals. It discusses game design theory and features practical examples of how this can be applied to making games that are more fun to play. Game Maker allows games to be created using a simple drag-and-drop interface, so you don't need to have any prior coding experience. It includes an optional programming language for adding advanced features to your games, when you feel ready to do so. You can obtain more information by visiting book.gamemaker.nl. The authors include the creator of the Game Maker tool and a former professional game programmer, so you'll glean understanding from their expertise. The book also includes a DVD containing Game Maker software and all of the game projects that are created in the book—plus a host of professional-quality graphics and sound effects that you can use in your own games.
The Efficiency Paradox: What Big Data Can't Do
Edward Tenner - 2018
One of the great promises of the Internet and big data revolutions is the idea that we can improve the processes and routines of our work and personal lives to get more done in less time than ever before. There is no doubt that we're performing at higher scales and going faster than ever, but what if we're headed in the wrong direction?The Efficiency Paradox questions our ingrained assumptions about efficiency, persuasively showing how relying on the algorithms of platforms can in fact lead to wasted efforts, missed opportunities, and above all an inability to break out of established patterns. Edward Tenner offers a smarter way to think about efficiency, showing how we can combine artificial intelligence and our own intuition, leaving ourselves and our institutions open to learning from the random and unexpected.
Disruptive Possibilities: How Big Data Changes Everything
Jeffrey Needham - 2013
As author Jeffrey Needham points out in this eye-opening book, big data can provide unprecedented insight into user habits, giving enterprises a huge market advantage. It will also inspire organizations to change the way they function."Disruptive Possibilities: How Big Data Changes Everything" takes you on a journey of discovery into the emerging world of big data, from its relatively simple technology to the ways it differs from cloud computing. But the big story of big data is the disruption of enterprise status quo, especially vendor-driven technology silos and budget-driven departmental silos. In the highly collaborative environment needed to make big data work, silos simply don't fit.Internet-scale computing offers incredible opportunity and a tremendous challenge--and it will soon become standard operating procedure in the enterprise. This book shows you what to expect.
Data Science from Scratch: First Principles with Python
Joel Grus - 2015
In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch.
If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out.
Get a crash course in Python
Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science
Collect, explore, clean, munge, and manipulate data
Dive into the fundamentals of machine learning
Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering
Explore recommender systems, natural language processing, network analysis, MapReduce, and databases
Clean Architecture
Robert C. Martin - 2017
"Uncle Bob" Martin shows how to bring greater professionalism and discipline to application architecture and design.As with his other books, Martin's Clean Architecture doesn't merely present multiple choices and options, and say "use your best judgment": it tells you what choices to make, and why those choices are critical to your success. Martin offers direct, no-nonsense answers to key architecture and design questions like:What are the best high level structures for different kinds of applications, including web, database, thick-client, console, and embedded apps?What are the core principles of software architecture?What is the role of the architect, and what is he/she really trying to achieve?What are the core principles of software design?How do designs and architectures go wrong, and what can you do about it?What are the disciplines and practices of professional architects and designers?Clean Architecture is essential reading for every software architect, systems analyst, system designer, and software manager — and for any programmer who aspires to these roles or is impacted by their work.
Python Tricks: A Buffet of Awesome Python Features
Dan Bader - 2017
Discover the “hidden gold” in Python’s standard library and start writing clean and Pythonic code today.
Who Should Read This Book:
If you’re wondering which lesser known parts in Python you should know about, you’ll get a roadmap with this book. Discover cool (yet practical!) Python tricks and blow your coworkers’ minds in your next code review.
If you’ve got experience with legacy versions of Python, the book will get you up to speed with modern patterns and features introduced in Python 3 and backported to Python 2.
If you’ve worked with other programming languages and you want to get up to speed with Python, you’ll pick up the idioms and practical tips you need to become a confident and effective Pythonista.
If you want to make Python your own and learn how to write clean and Pythonic code, you’ll discover best practices and little-known tricks to round out your knowledge.
What Python Developers Say About The Book:
"I kept thinking that I wished I had access to a book like this when I started learning Python many years ago." — Mariatta Wijaya, Python Core Developer"This book makes you write better Python code!" — Bob Belderbos, Software Developer at Oracle"Far from being just a shallow collection of snippets, this book will leave the attentive reader with a deeper understanding of the inner workings of Python as well as an appreciation for its beauty." — Ben Felder, Pythonista"It's like having a seasoned tutor explaining, well, tricks!" — Daniel Meyer, Sr. Desktop Administrator at Tesla Inc.
Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement
Eric Redmond - 2012
As a modern application developer you need to understand the emerging field of data management, both RDBMS and NoSQL. Seven Databases in Seven Weeks takes you on a tour of some of the hottest open source databases today. In the tradition of Bruce A. Tate's Seven Languages in Seven Weeks, this book goes beyond your basic tutorial to explore the essential concepts at the core each technology. Redis, Neo4J, CouchDB, MongoDB, HBase, Riak and Postgres. With each database, you'll tackle a real-world data problem that highlights the concepts and features that make it shine. You'll explore the five data models employed by these databases-relational, key/value, columnar, document and graph-and which kinds of problems are best suited to each. You'll learn how MongoDB and CouchDB are strikingly different, and discover the Dynamo heritage at the heart of Riak. Make your applications faster with Redis and more connected with Neo4J. Use MapReduce to solve Big Data problems. Build clusters of servers using scalable services like Amazon's Elastic Compute Cloud (EC2). Discover the CAP theorem and its implications for your distributed data. Understand the tradeoffs between consistency and availability, and when you can use them to your advantage. Use multiple databases in concert to create a platform that's more than the sum of its parts, or find one that meets all your needs at once.Seven Databases in Seven Weeks will take you on a deep dive into each of the databases, their strengths and weaknesses, and how to choose the ones that fit your needs.What You Need: To get the most of of this book you'll have to follow along, and that means you'll need a *nix shell (Mac OSX or Linux preferred, Windows users will need Cygwin), and Java 6 (or greater) and Ruby 1.8.7 (or greater). Each chapter will list the downloads required for that database.
Think Stats
Allen B. Downey - 2011
This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data
The Productive Programmer
Neal Ford - 2008
The Productive Programmer offers critical timesaving and productivity tools that you can adopt right away, no matter what platform you use. Master developer Neal Ford not only offers advice on the mechanics of productivity-how to work smarter, spurn interruptions, get the most out your computer, and avoid repetition-he also details valuable practices that will help you elude common traps, improve your code, and become more valuable to your team. You'll learn to:Write the test before you write the codeManage the lifecycle of your objects fastidiously Build only what you need now, not what you might need later Apply ancient philosophies to software development Question authority, rather than blindly adhere to standardsMake hard things easier and impossible things possible through meta-programming Be sure all code within a method is at the same level of abstraction Pick the right editor and assemble the best tools for the job This isn't theory, but the fruits of Ford's real-world experience as an Application Architect at the global IT consultancy ThoughtWorks. Whether you're a beginner or a pro with years of experience, you'll improve your work and your career with the simple and straightforward principles in The Productive Programmer.