Book picks similar to
Einstein for the 21st Century: His Legacy in Science, Art, and Modern Culture by Peter Galison
science
einstein
history-of-science
physics
Professor Maxwell’s Duplicitous Demon: The Life and Science of James Clerk Maxwell
Brian Clegg - 2019
But ask a physicist and there’s no doubt that James Clerk Maxwell will be near the top of the list.
Maxwell, an unassuming Victorian Scotsman, explained how we perceive colour. He uncovered the way gases behave. And, most significantly, he transformed the way physics was undertaken in his explanation of the interaction of electricity and magnetism, revealing the nature of light and laying the groundwork for everything from Einstein’s special relativity to modern electronics.
Along the way, he set up one of the most enduring challenges in physics, one that has taxed the best minds ever since. ‘Maxwell’s demon’ is a tiny but thoroughly disruptive thought experiment that suggests the second law of thermodynamics, the law that governs the flow of time itself, can be broken. This is the story of a groundbreaking scientist, a great contributor to our understanding of the way the world works, and his duplicitous demon.
On the Shoulders of Giants: The Great Works of Physics and Astronomy
Stephen Hawking - 2002
Depicting the great challenges these men faced and the lasting contributions they made, Hawking explains how their works transformed the course of science – and gave us a better understanding of the universe and our place in it.
Uncertainty: Einstein, Heisenberg, Bohr, and the Struggle for the Soul of Science
David Lindley - 2007
Heisenberg’s principle implied that scientific quantities/concepts do not have absolute, independent meaning, but acquire meaning only in terms of the experiments used to measure them. This proposition, undermining the cherished belief that science could reveal the physical world with limitless detail and precision, placed Heisenberg in direct opposition to the revered Albert Einstein. The eminent scientist Niels Bohr, Heisenberg’s mentor and Einstein’s long-time friend, found himself caught between the two.Uncertainty chronicles the birth and evolution of one of the most significant findings in the history of science, and portrays the clash of ideas and personalities it provoked. Einstein was emotionally as well as intellectually determined to prove the uncertainty principle false. Heisenberg represented a new generation of physicists who believed that quantum theory overthrew the old certainties; confident of his reasoning, Heisenberg dismissed Einstein’s objections. Bohr understood that Heisenberg was correct, but he also recognized the vital necessity of gaining Einstein’s support as the world faced the shocking implications of Heisenberg’s principle.
Albert Einstein: And the Frontiers of Physics
Jeremy Bernstein - 1995
They found him a dreamy child without an especially promising future. But some time in his early years he developed what he called wonder about the world. Later in life, he remembered two instances from his childhood--his fascination at age five with a compass and his introduction to the lucidity and certainty of geometry--that may have been the first signs of what was to come. From these ordinary beginnings, Einstein became one of the greatest scientific thinkers of all time. This illuminating biography describes in understandable language the experiments and revolutionary theories that flowed from Einstein's imagination and intellect--from his theory of relativity, which changed our conception of the universe and our place in it, to his search for a unified field theory that would explain all of the forces in the universe.
Einstein's Miraculous Year
John J. Stachel - 1998
In those twelve months, Einstein shattered many cherished scientific beliefs with five extraordinary papers that would establish him as the world's leading physicist. This book brings those papers together in an accessible format. The best-known papers are the two that founded special relativity: On the Electrodynamics of Moving Bodies and Does the Inertia of a Body Depend on Its Energy Content? In the former, Einstein showed that absolute time had to be replaced by a new absolute: the speed of light. In the second, he asserted the equivalence of mass and energy, which would lead to the famous formula E = mc2.The book also includes On a Heuristic Point of View Concerning the Production and Transformation of Light, in which Einstein challenged the wave theory of light, suggesting that light could also be regarded as a collection of particles. This helped to open the door to a whole new world--that of quantum physics. For ideas in this paper, he won the Nobel Prize in 1921.The fourth paper also led to a Nobel Prize, although for another scientist, Jean Perrin. On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat concerns the Brownian motion of such particles. With profound insight, Einstein blended ideas from kinetic theory and classical hydrodynamics to derive an equation for the mean free path of such particles as a function of the time, which Perrin confirmed experimentally. The fifth paper, A New Determination of Molecular Dimensions, was Einstein's doctoral dissertation, and remains among his most cited articles. It shows how to calculate Avogadro's number and the size of molecules.These papers, presented in a modern English translation, are essential reading for any physicist, mathematician, or astrophysicist. Far more than just a collection of scientific articles, this book presents work that is among the high points of human achievement and marks a watershed in the history of science. Coinciding with the 100th anniversary of the miraculous year, this new paperback edition includes an introduction by John Stachel, which focuses on the personal aspects of Einstein's youth that facilitated and led up to the miraculous year.
Who Got Einstein's Office? Eccentricity and Genius at the Institute for Advanced Study
Ed Regis - 1987
Robert Oppenheimer rode out his political persecution in the Director's mansion. It is the Institute for Advanced Study in Princeton, New Jersey; at one time or another, home to fourteen Nobel laureates, most of the great physicists and mathematicians of the modern era, and two of the most exciting developments in twentieth-century science—cellular automata and superstrings.Who Got Einstein's Office? tells for the first time the story of this secretive institution and of its fascinating personalities.
Einstein and the Quantum: The Quest of the Valiant Swabian
A. Douglas Stone - 2013
Einstein famously rejected quantum mechanics, observing that God does not play dice. But, in fact, he thought more about the nature of atoms, molecules, and the emission and absorption of light--the core of what we now know as quantum theory--than he did about relativity.A compelling blend of physics, biography, and the history of science, "Einstein and the Quantum" shares the untold story of how Einstein--not Max Planck or Niels Bohr--was the driving force behind early quantum theory. It paints a vivid portrait of the iconic physicist as he grappled with the apparently contradictory nature of the atomic world, in which its invisible constituents defy the categories of classical physics, behaving simultaneously as both particle and wave. And it demonstrates how Einstein's later work on the emission and absorption of light, and on atomic gases, led directly to Erwin Schrodinger's breakthrough to the modern form of quantum mechanics. The book sheds light on why Einstein ultimately renounced his own brilliant work on quantum theory, due to his deep belief in science as something objective and eternal.A book unlike any other, "Einstein and the Quantum" offers a completely new perspective on the scientific achievements of the greatest intellect of the twentieth century, showing how Einstein's contributions to the development of quantum theory are more significant, perhaps, than even his legendary work on relativity.
Quantum Man: Richard Feynman's Life in Science
Lawrence M. Krauss - 2011
Here Lawrence M. Krauss, himself a theoretical physicist and best-selling author, offers a unique scientific biography: a rollicking narrative coupled with clear and novel expositions of science at the limits. An immensely colorful persona in and out of the office, Feynman revolutionized our understanding of nature amid a turbulent life. Krauss presents that life—from the death of Feynman’s childhood sweetheart during the Manhattan Project to his reluctant rise as a scientific icon—as seen through the science, providing a new understanding of the legacy of a man who has fascinated millions. An accessible reflection on the issues that drive physics today, Quantum Man captures the story of a man who was willing to break all the rules to tame a theory that broke all the rules.
Young Einstein: From the Doxerl Affair to the Miracle Year
L. Randles Lagerstrom - 2013
In 1905 an unknown 26-year-old clerk at the Swiss Patent Office, who had supposedly failed math in school, burst on to the scientific scene and swept away the hidebound theories of the day. The clerk, Albert Einstein, introduced a new and unexpected understanding of the universe and launched the two great revolutions of twentieth-century physics, relativity and quantum mechanics. The obscure origin and wide-ranging brilliance of the work recalled Isaac Newton’s “annus mirabilis” (miracle year) of 1666, when as a 23-year-old seeking safety at his family manor from an outbreak of the plague, he invented calculus and laid the foundations for his theory of gravity. Like Newton, Einstein quickly became a scientific icon--the image of genius and, according to Time magazine, the Person of the Century.The actual story is much more interesting. Einstein himself once remarked that “science as something coming into being ... is just as subjectively, psychologically conditioned as are all other human endeavors.” In this profile, the historian of science L. Randles Lagerstrom takes you behind the myth and into the very human life of the young Einstein. From family rifts and girlfriend troubles to financial hardships and jobless anxieties, Einstein’s early years were typical of many young persons. And yet in the midst of it all, he also saw his way through to profound scientific insights. Drawing upon correspondence from Einstein, his family, and his friends, Lagerstrom brings to life the young Einstein and enables the reader to come away with a fuller and more appreciative understanding of Einstein the person and the origins of his revolutionary ideas.About the cover image: While walking to work six days a week as a patent clerk in Bern, Switzerland, Einstein would pass by the famous "Zytglogge" tower and its astronomical clocks. The daily juxtaposition was fitting, as the relative nature of time and clock synchronization would be one of his revolutionary discoveries in the miracle year of 1905.
Faust in Copenhagen: A Struggle for the Soul of Physics
Gino Segrè - 2007
However, while physicists celebrated these momentous discoveries—which presaged the era of big science and nuclear bombs—Europe was moving inexorably toward totalitarianism and war. In April of that year, about forty of the world’s leading physicists—including Werner Heisenberg, Lise Meitner, and Paul Dirac—came to Niels Bohr’s Copenhagen Institute for their annual informal meeting about the frontiers of physics. Physicist Gino Segrè brings to life this historic gathering, which ended with a humorous skit based on Goethe’s Faust—a skit that eerily foreshadowed events that would soon unfold. Little did the scientists know the Faustian bargains they would face in the near future. Capturing the interplay between the great scientists as well as the discoveries they discussed and debated, Segrè evokes the moment when physics—and the world—was about to lose its innocence.
The Perfect Theory: A Century of Geniuses and the Battle over General Relativity
Pedro G. Ferreira - 2014
Their work has uncovered a number of the universe’s more surprising secrets, and many believe further wonders remain hidden within the theory’s tangle of equations, waiting to be exposed. In this sweeping narrative of science and culture, astrophysicist Pedro Ferreira brings general relativity to life through the story of the brilliant physicists, mathematicians, and astronomers who have taken up its challenge. For these scientists, the theory has been both a treasure trove and an enigma, fueling a century of intellectual struggle and triumph.. Einstein’s theory, which explains the relationships among gravity, space, and time, is possibly the most perfect intellectual achievement of modern physics, yet studying it has always been a controversial endeavor. Relativists were the target of persecution in Hitler’s Germany, hounded in Stalin’s Russia, and disdained in 1950s America. Even today, PhD students are warned that specializing in general relativity will make them unemployable. Despite these pitfalls, general relativity has flourished, delivering key insights into our understanding of the origin of time and the evolution of all the stars and galaxies in the cosmos. Its adherents have revealed what lies at the farthest reaches of the universe, shed light on the smallest scales of existence, and explained how the fabric of reality emerges. Dark matter, dark energy, black holes, and string theory are all progeny of Einstein’s theory. We are in the midst of a momentous transformation in modern physics. As scientists look farther and more clearly into space than ever before, The Perfect Theory reveals the greater relevance of general relativity, showing us where it started, where it has led, and where it can still take us.
Isaac Newton
James Gleick - 2003
When he died in London in 1727 he was so renowned he was given a state funeral—an unheard-of honor for a subject whose achievements were in the realm of the intellect. During the years he was an irascible presence at Trinity College, Cambridge, Newton imagined properties of nature and gave them names—mass, gravity, velocity—things our science now takes for granted. Inspired by Aristotle, spurred on by Galileo’s discoveries and the philosophy of Descartes, Newton grasped the intangible and dared to take its measure, a leap of the mind unparalleled in his generation.James Gleick, the author of Chaos and Genius, and one of the most acclaimed science writers of his generation, brings the reader into Newton’s reclusive life and provides startlingly clear explanations of the concepts that changed forever our perception of bodies, rest, and motion. Ideas so basic to the twenty-first century we literally take them for granted.
The Theory That Would Not Die: How Bayes' Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and Emerged Triumphant from Two Centuries of Controversy
Sharon Bertsch McGrayne - 2011
To its adherents, it is an elegant statement about learning from experience. To its opponents, it is subjectivity run amok.In the first-ever account of Bayes' rule for general readers, Sharon Bertsch McGrayne explores this controversial theorem and the human obsessions surrounding it. She traces its discovery by an amateur mathematician in the 1740s through its development into roughly its modern form by French scientist Pierre Simon Laplace. She reveals why respected statisticians rendered it professionally taboo for 150 years—at the same time that practitioners relied on it to solve crises involving great uncertainty and scanty information (Alan Turing's role in breaking Germany's Enigma code during World War II), and explains how the advent of off-the-shelf computer technology in the 1980s proved to be a game-changer. Today, Bayes' rule is used everywhere from DNA de-coding to Homeland Security.Drawing on primary source material and interviews with statisticians and other scientists, The Theory That Would Not Die is the riveting account of how a seemingly simple theorem ignited one of the greatest controversies of all time.
Brilliant Blunders: From Darwin to Einstein - Colossal Mistakes by Great Scientists That Changed Our Understanding of Life and the Universe
Mario Livio - 2013
Nobody is perfect. And that includes five of the greatest scientists in history—Charles Darwin, William Thomson (Lord Kelvin), Linus Pauling, Fred Hoyle, and Albert Einstein. But the mistakes that these great luminaries made helped advance science. Indeed, as Mario Livio explains, science thrives on error, advancing when erroneous ideas are disproven.As a young scientist, Einstein tried to conceive of a way to describe the evolution of the universe at large, based on General Relativity—his theory of space, time, and gravity. Unfortunately he fell victim to a misguided notion of aesthetic simplicity. Fred Hoyle was an eminent astrophysicist who ridiculed an emerging theory about the origin of the universe that he dismissively called “The Big Bang.” The name stuck, but Hoyle was dead wrong in his opposition.They, along with Darwin (a blunder in his theory of Natural Selection), Kelvin (a blunder in his calculation of the age of the earth), and Pauling (a blunder in his model for the structure of the DNA molecule), were brilliant men and fascinating human beings. Their blunders were a necessary part of the scientific process. Collectively they helped to dramatically further our knowledge of the evolution of life, the Earth, and the universe.
The Invisible Century: Einstein, Freud, and the Search for Hidden Universes
Richard Panek - 2000
This dual biography of Albert Einstein and Sigmund Freud— and their parallel journeys of discovery that altered forever our understanding of the very nature of reality. Einstein and Freud were the foremost figures in search of the next level of scientific knowledge—evidence we can’t see. Here on the frontier of the invisible, their investigations reached unprecedented realms—relativity and the unconscious—and spawned the creation of two new sciences, cosmology and psychoanalysis. Together they have allowed us for more than a hundred years to explore previously unimaginable universes without and within.