Book picks similar to
Digital Design: Principles and Practices Package by John F. Wakerly
electronics
electrical-engineering
textbooks
textbook
How to Prove It: A Structured Approach
Daniel J. Velleman - 1994
The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5
Python for Data Analysis
Wes McKinney - 2011
It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing.Use the IPython interactive shell as your primary development environmentLearn basic and advanced NumPy (Numerical Python) featuresGet started with data analysis tools in the pandas libraryUse high-performance tools to load, clean, transform, merge, and reshape dataCreate scatter plots and static or interactive visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsMeasure data by points in time, whether it's specific instances, fixed periods, or intervalsLearn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples
An Introduction to APIs
Brian Cooksey - 2016
We start off easy, defining some of the tech lingo you may have heard before, but didn’t fully understand. From there, each lesson introduces something new, slowly building up to the point where you are confident about what an API is and, for the brave, could actually take a stab at using one.
Eloquent JavaScript: A Modern Introduction to Programming
Marijn Haverbeke - 2010
I loved the tutorial-style game-like program development. This book rekindled my earliest joys of programming. Plus, JavaScript!" —Brendan Eich, creator of JavaScriptJavaScript is the language of the Web, and it's at the heart of every modern website from the lowliest personal blog to the mighty Google Apps. Though it's simple for beginners to pick up and play with, JavaScript is not a toy—it's a flexible and complex language, capable of much more than the showy tricks most programmers use it for.Eloquent JavaScript goes beyond the cut-and-paste scripts of the recipe books and teaches you to write code that's elegant and effective. You'll start with the basics of programming, and learn to use variables, control structures, functions, and data structures. Then you'll dive into the real JavaScript artistry: higher-order functions, closures, and object-oriented programming.Along the way you'll learn to:Master basic programming techniques and best practices Harness the power of functional and object-oriented programming Use regular expressions to quickly parse and manipulate strings Gracefully deal with errors and browser incompatibilities Handle browser events and alter the DOM structure Most importantly, Eloquent JavaScript will teach you to express yourself in code with precision and beauty. After all, great programming is an art, not a science—so why settle for a killer app when you can create a masterpiece?
Doing Data Science
Cathy O'Neil - 2013
But how can you get started working in a wide-ranging, interdisciplinary field that’s so clouded in hype? This insightful book, based on Columbia University’s Introduction to Data Science class, tells you what you need to know.In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you’re familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science.Topics include:Statistical inference, exploratory data analysis, and the data science processAlgorithmsSpam filters, Naive Bayes, and data wranglingLogistic regressionFinancial modelingRecommendation engines and causalityData visualizationSocial networks and data journalismData engineering, MapReduce, Pregel, and HadoopDoing Data Science is collaboration between course instructor Rachel Schutt, Senior VP of Data Science at News Corp, and data science consultant Cathy O’Neil, a senior data scientist at Johnson Research Labs, who attended and blogged about the course.
Learning From Data: A Short Course
Yaser S. Abu-Mostafa - 2012
Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.
Microwave Engineering
David M. Pozar - 1990
The author successfully introduces Maxwell's equations, wave propagation, network analysis, and design principles as applied to modern microwave engineering. A considerable amount of material in this book is related to the design of specific microwave circuits and components, for both practical and motivational value. It also presents the analysis and logic behind these designs so that the reader can see and understand the process of applying the fundamental concepts to arrive at useful results. The derivations are well laid out and the majority of each chapter's formulas are displayed in a nice tabular format every few pages. This Third Edition offers greatly expanded coverage with new material on: Noise; Nonlinear effects; RF MEMs; transistor power amplifiers; FET mixers; oscillator phase noise; transistor oscillators and frequency multiplier.
MongoDB: The Definitive Guide
Kristina Chodorow - 2010
Learn how easy it is to handle data as self-contained JSON-style documents, rather than as records in a relational database.Explore ways that document-oriented storage will work for your projectLearn how MongoDB’s schema-free data model handles documents, collections, and multiple databasesExecute basic write operations, and create complex queries to find data with any criteriaUse indexes, aggregation tools, and other advanced query techniquesLearn about monitoring, security and authentication, backup and repair, and moreSet up master-slave and automatic failover replication in MongoDBUse sharding to scale MongoDB horizontally, and learn how it impacts applicationsGet example applications written in Java, PHP, Python, and Ruby
The Protocols (TCP/IP Illustrated, Volume 1)
W. Richard Stevens - 1993
In eight chapters, it provides the most thorough coverage of TCP available. It also covers the newest TCP/IP features, including multicasting, path MTU discovery and long fat pipes. The author describes various protocols, including ARP, ICMP and UDP. He utilizes network diagnostic tools to actually show the protocols in action. He also explains how to avoid silly window syndrome (SWS) by using numerous helpful diagrams. This book gives you a broader understanding of concepts like connection establishment, timeout, retransmission and fragmentation. It is ideal for anyone wanting to gain a greater understanding of how the TCP/IP protocols work.
Digital Systems: Principles and Applications
Ronald J. Tocci - 1977
KEY TOPICS For each new device or circuit, the authors describe the principle of the operation, give thorough examples, and then show its actual application. An excellent reference on modern digital systems.
R for Data Science: Import, Tidy, Transform, Visualize, and Model Data
Hadley Wickham - 2016
This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible.
Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You’ll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you’ve learned along the way.
You’ll learn how to:
Wrangle—transform your datasets into a form convenient for analysis
Program—learn powerful R tools for solving data problems with greater clarity and ease
Explore—examine your data, generate hypotheses, and quickly test them
Model—provide a low-dimensional summary that captures true "signals" in your dataset
Communicate—learn R Markdown for integrating prose, code, and results
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
An Introduction to Formal Language and Automata
Peter Linz - 1990
The Text Was Designed To Familiarize Students With The Foundations And Principles Of Computer Science And To Strengthen The Students' Ability To Carry Out Formal And Rigorous Mathematical Arguments. In The New Fourth Edition, Author Peter Linz Has Offered A Straightforward, Uncomplicated Treatment Of Formal Languages And Automata And Avoids Excessive Mathematical Detail So That Students May Focus On And Understand The Underlying Principles. In An Effort To Further The Accessibility And Comprehension Of The Text, The Author Has Added New Illustrative Examples Throughout.
CMOS VLSI Design: A Circuits and Systems Perspective
Neil H.E. Weste - 2004
The authors draw upon extensive industry and classroom experience to explain modern practices of chip design. The introductory chapter covers transistor operation, CMOS gate design, fabrication, and layout at a level accessible to anyone with an elementary knowledge of digital electornics. Later chapters beuild up an in-depth discussion of the design of complex, high performance, low power CMOS Systems-on-Chip.
Learning SQL
Alan Beaulieu - 2005
If you're working with a relational database--whether you're writing applications, performing administrative tasks, or generating reports--you need to know how to interact with your data. Even if you are using a tool that generates SQL for you, such as a reporting tool, there may still be cases where you need to bypass the automatic generation feature and write your own SQL statements.To help you attain this fundamental SQL knowledge, look to "Learning SQL," an introductory guide to SQL, designed primarily for developers just cutting their teeth on the language."Learning SQL" moves you quickly through the basics and then on to some of the more commonly used advanced features. Among the topics discussed: The history of the computerized databaseSQL Data Statements--those used to create, manipulate, and retrieve data stored in your database; example statements include select, update, insert, and deleteSQL Schema Statements--those used to create database objects, such as tables, indexes, and constraintsHow data sets can interact with queriesThe importance of subqueriesData conversion and manipulation via SQL's built-in functionsHow conditional logic can be used in Data StatementsBest of all, "Learning SQL" talks to you in a real-world manner, discussing various platform differences that you're likely to encounter and offering a series of chapter exercises that walk you through the learning process. Whenever possible, the book sticks to the features included in the ANSI SQL standards. This means you'll be able to apply what you learn to any of several different databases; the book covers MySQL, Microsoft SQL Server, and Oracle Database, but the features and syntax should apply just as well (perhaps with some tweaking) to IBM DB2, Sybase Adaptive Server, and PostgreSQL.Put the power and flexibility of SQL to work. With "Learning SQL" you can master this important skill and know that the SQL statements you write are indeed correct.