Book picks similar to
Programming Machine Learning by Paolo Perrotta
computer-science
data-and-ai
programming
stand-by
Python: The Complete Reference
Martin C. Brown - 2001
This text is split into distinct sections, each concentrating on a core angle of the language. The book also contains sections for Web and application development, the two most popular uses for Python. It is designed to teach a programmer how to use Python by explaining the mechanics of Python. The appendixes offer a quick guide to the main features of the Python language, as well as additional guides to non-essential systems such as the IDLE development environment and general guidelines for migrating from another language.
AI Superpowers: China, Silicon Valley, and the New World Order
Kai-Fu Lee - 2018
Kai-Fu Lee—one of the world’s most respected experts on AI and China—reveals that China has suddenly caught up to the US at an astonishingly rapid and unexpected pace.In AI Superpowers, Kai-Fu Lee argues powerfully that because of these unprecedented developments in AI, dramatic changes will be happening much sooner than many of us expected. Indeed, as the US-Sino AI competition begins to heat up, Lee urges the US and China to both accept and to embrace the great responsibilities that come with significant technological power.Most experts already say that AI will have a devastating impact on blue-collar jobs. But Lee predicts that Chinese and American AI will have a strong impact on white-collar jobs as well. Is universal basic income the solution? In Lee’s opinion, probably not. But he provides a clear description of which jobs will be affected and how soon, which jobs can be enhanced with AI, and most importantly, how we can provide solutions to some of the most profound changes in human history that are coming soon.
Computer Vision: Algorithms and Applications
Richard Szeliski - 2010
However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art?Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos.More than just a source of "recipes," this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniquesTopics and features: Structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses Presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects Provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory Suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book Supplies supplementary course material for students at the associated website, http: //szeliski.org/Book/ Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.
Pro ASP.NET MVC 4
Adam Freeman - 2012
It provides a high-productivity programming model that promotes cleaner code architecture, test-driven development, and powerful extensibility, combined with all the benefits of ASP.NET.ASP.NET MVC 4 contains a number of significant advances over previous versions. New mobile and desktop templates (employing adaptive rendering) are included together with support for jQuery Mobile for the first time. New display modes allow your application to select views based on the browser that's making the request while Code Generation Recipes for Visual Studio help you auto-generate project-specific code for a wide variety of situtations including NuGet support.In this fourth edition, the core model-view-controller (MVC) architectural concepts are not simply explained or discussed in isolation, but are demonstrated in action. You'll work through an extended tutorial to create a working e-commerce web application that combines ASP.NET MVC with the latest C# language features and unit-testing best practices. By gaining this invaluable, practical experience, you'll discover MVC's strengths and weaknesses for yourself--and put your best-learned theory into practice.The book's authors, Steve Sanderson and Adam Freeman, have both watched the growth of ASP.NET MVC since its first release. Steve is a well-known blogger on the MVC Framework and a member of the Microsoft Web Platform and Tools team. Adam started designing and building web applications 15 years ago and has been responsible for some of the world's largest and most ambitious projects. You can be sure you are in safe hands.
Humans vs Computers
Gojko Adzic - 2017
You'll read about humans who are invisible to computers, how a default password once caused a zombie apocalypse and why airlines sometimes give away free tickets. This is also a book on how to prevent, avoid and reduce the impact of such problems. Our lives are increasingly tracked, monitored and categorised by software, driving a flood of information into the vast sea of big data. In this brave new world, humans can't cope with information overload. Governments and companies alike rely on computers to automatically detect fraud, predict behaviour and enforce laws. Inflexible automatons, barely smarter than a fridge, now make life-changing decisions. Clever marketing tricks us into believing that phones, TV sets and even cars are somehow smart. Yet all those computer systems were created by people - people who are well-meaning but fallible and biased, clever but forgetful, and who have grand plans but are pressed for time. Digitising a piece of work doesn't mean there will be no mistakes, but instead guarantees that when mistakes happen, they'll run at a massive scale. The next time you bang your head against a digital wall, the stories in this book will help you understand better what's going on and show you where to look for problems. If nothing else, when it seems as if you're under a black-magic spell, these stories will at least allow you to see the lighter side of the binary chaos. For people involved in software delivery, this book will help you find more empathy for people suffering from our mistakes, and discover heuristics to use during analysis, development or testing to make your software less error prone. <
Think Stats
Allen B. Downey - 2011
This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data
Microsoft .NET - Architecting Applications for the Enterprise
Dino Esposito - 2014
But the principles and practices of software architecting–what the authors call the “science of hard decisions”–have been evolving for cloud, mobile, and other shifts. Now fully revised and updated, this book shares the knowledge and real-world perspectives that enable you to design for success–and deliver more successful solutions. In this fully updated Second Edition, you will: Learn how only a deep understanding of domain can lead to appropriate architecture Examine domain-driven design in both theory and implementation Shift your approach to code first, model later–including multilayer architecture Capture the benefits of prioritizing software maintainability See how readability, testability, and extensibility lead to code quality Take a user experience (UX) first approach, rather than designing for data Review patterns for organizing business logic Use event sourcing and CQRS together to model complex business domains more effectively Delve inside the persistence layer, including patterns and implementation.
Information Theory, Inference and Learning Algorithms
David J.C. MacKay - 2002
These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.
Ahead in the Cloud: Best Practices for Navigating the Future of Enterprise IT
Stephen Orban - 2018
It has made countless new businesses possible and presents a massive opportunity for large enterprises to innovate like startups and retire decades of technical debt. But making the most of the cloud requires much more from enterprises than just a technology change. Stephen Orban led Dow Jones’s journey toward digital agility as their CIO and now leads AWS’s Enterprise Strategy function, where he helps leaders from the largest companies in the world transform their businesses. As he demonstrates in this book, enterprises must re-train their people, evolve their processes, and transform their cultures as they move to the cloud. By bringing together his experiences and those of a number of business leaders, Orban shines a light on what works, what doesn’t, and how enterprises can transform themselves using the cloud.
Python for Data Analysis
Wes McKinney - 2011
It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing.Use the IPython interactive shell as your primary development environmentLearn basic and advanced NumPy (Numerical Python) featuresGet started with data analysis tools in the pandas libraryUse high-performance tools to load, clean, transform, merge, and reshape dataCreate scatter plots and static or interactive visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsMeasure data by points in time, whether it's specific instances, fixed periods, or intervalsLearn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples
Make Your Own Neural Network: An In-depth Visual Introduction For Beginners
Michael Taylor - 2017
A step-by-step visual journey through the mathematics of neural networks, and making your own using Python and Tensorflow.
Mining of Massive Datasets
Anand Rajaraman - 2011
This book focuses on practical algorithms that have been used to solve key problems in data mining and which can be used on even the largest datasets. It begins with a discussion of the map-reduce framework, an important tool for parallelizing algorithms automatically. The authors explain the tricks of locality-sensitive hashing and stream processing algorithms for mining data that arrives too fast for exhaustive processing. The PageRank idea and related tricks for organizing the Web are covered next. Other chapters cover the problems of finding frequent itemsets and clustering. The final chapters cover two applications: recommendation systems and Web advertising, each vital in e-commerce. Written by two authorities in database and Web technologies, this book is essential reading for students and practitioners alike.
The Art and Science of Java
Eric S. Roberts - 2007
By following the recommendations of the Association of Computing Machinery's Java Task Force, this first edition text adopts a modern objects-first approach that introduces readers to useful hierarchies from the very beginning.KEY TOPICS: Introduction; Programming by Example; Expressions; Statement Forms; Methods; Objects and Classes; Objects and Memory; Strings and Characters; Object-Oriented Graphics; Event-Driven Programs; Arrays and ArrayLists; Searching and Sorting; Collection Classes; Looking Ahead.MARKET: A modern objects-first approach to the Java programming language that introduces readers to useful class hierarchies from the very beginning.
The Rails 4 Way
Obie Fernandez - 2013
It has conquered developer mindshare at startups and enterprises alike with its focus of simplicity, convention and clean, maintainable code. The latest version, Rails 4, continues the tradition of enhanced performance, security and developer productivity, with improvements that enable professional developers to focus on what matters most: delivering business value quickly and consistently.The Rails™ 4 Way is the only comprehensive, authoritative guide to delivering production-quality code with Rails 4. Pioneering Rails expert Obie Fernandez and his team of leading Rails experts illuminate the entire set of Rails APIs, along with the idioms, design approaches, and libraries that make developing applications with Rails so powerful. Drawing on their unsurpassed experience and track record, they address the real challenges development teams face, showing how to use Rails to maximize your productivity.Using numerous detailed code examples, the author systematically cover Rails key capabilities and subsystems, making this book a reference that you depend on everyday. He presents advanced Rails programming techniques that have been proven effective in day-to-day usage on dozens of production Rails systems and offers important insights into behavior-driven development and production considerations such as scalability. Dive deep into the subtleties of the asset pipeline and other advanced Rails topics such as security and scalability. The Rails 4 Way is your best guide for making Rails do exactly what you want it to do.
Practical Statistics for Data Scientists: 50 Essential Concepts
Peter Bruce - 2017
Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data