Visions: How Science Will Revolutionize the 21st Century


Michio Kaku - 1997
    We will no longer be passive bystanders to the dance of the universe, but will become creative choreographers of matter, life, and intelligence.The first section of Visions presents a shocking look at a cyber-world infiltrated by millions of tiny intelligence systems. Part two illustrates how the decoding of DNA's genetic structure will allow humans the "godlike ability to manipulate life almost at will." Finally, VISIONS focuses on the future of quantum physics, in which physicists will perfect new ways to manipulate matter and harness the cosmic energy of the universe.What makes Michio Kaku's vision of the science of the future so compelling--and so different from the mere forecasts of most thinkers--is that it is based on the groundbreaking research taking place in labs today, as well as the consensus of over 150 of Kaku's scientific colleagues. Science, for all its breathtaking change, evolves slowly; we can accurately predict, asserts Kaku, what the direction of science will be, based on the paths that are being forged today.A thrilling, unique narrative that brings together the thinking of many of the world's most accomplished scientists to explore the world of the future, Visions is science writing at its best.

The Universe and the Teacup: The Mathematics of Truth and Beauty


K.C. Cole - 1998
    In The Universe and the Teacup, K. C. Cole demystifies mathematics and shows us-with humor and wonderfully accessible stories-why math need not be frightening. Using the O. J. Simpson trial, the bell curve, and Emmy Noether, the nineteenth-century woman scientist whose work was essential for Einstein's theory of relativity, Cole helps us see that more than just being a tool, math is a key to understanding the beauty of everything from rainbows to relativity.

Meta Math!: The Quest for Omega


Gregory Chaitin - 2005
    His investigations shed light on what we can ultimately know about the universe and the very nature of life. In an infectious and enthusiastic narrative, Chaitin delineates the specific intellectual and intuitive steps he took toward the discovery. He takes us to the very frontiers of scientific thinking, and helps us to appreciate the art—and the sheer beauty—in the science of math.

Adventures of a Computational Explorer


Stephen Wolfram - 2019
    In this lively book of essays, Stephen Wolfram takes the reader along on some of his most surprising and engaging intellectual adventures in science, technology, artificial intelligence and language design.

Absolute Zero and the Conquest of Cold


Tom Shachtman - 1999
    Readers take an extraordinary trip, starting in the 1600s with an alchemist's air conditioning of Westminster Abbey and scientists' creation of thermometers. Later, while entrepreneurs sold Walden Pond ice to tropical countries -- packed in "high-tech" sawdust -- researchers pursued absolute zero and interpreted their work as romantically as did adventurers to remote regions. Today, playing with ultracold temperatures is one of the hottest frontiers in physics, with scientists creating useful particles Einstein only dreamed of. Tom Shachtman shares a great scientific adventure story and its characters' rich lives in a book that has won a grant from the prestigious Alfred P. Sloan Foundation. Absolute Zero is for everyone who loves history and science history stories, who's eager to explore Nobel Prize-winning physics today, or who has ever sighed with pleasure on encountering air conditioning.

In Pursuit of the Traveling Salesman: Mathematics at the Limits of Computation


William J. Cook - 2011
    In this book, William Cook takes readers on a mathematical excursion, picking up the salesman's trail in the 1800s when Irish mathematician W. R. Hamilton first defined the problem, and venturing to the furthest limits of today's state-of-the-art attempts to solve it. He also explores its many important applications, from genome sequencing and designing computer processors to arranging music and hunting for planets.In Pursuit of the Traveling Salesman travels to the very threshold of our understanding about the nature of complexity, and challenges you yourself to discover the solution to this captivating mathematical problem.

The Little Book of Mathematical Principles, Theories, & Things


Robert Solomon - 2008
    Rare Book

The Number Devil: A Mathematical Adventure


Hans Magnus Enzensberger - 1997
    As we dream with him, we are taken further and further into mathematical theory, where ideas eventually take flight, until everyone--from those who fumble over fractions to those who solve complex equations in their heads--winds up marveling at what numbers can do.Hans Magnus Enzensberger is a true polymath, the kind of superb intellectual who loves thinking and marshals all of his charm and wit to share his passions with the world. In The Number Devil, he brings together the surreal logic of Alice in Wonderland and the existential geometry of Flatland with the kind of math everyone would love, if only they had a number devil to teach them.

Genius At Play: The Curious Mind of John Horton Conway


Siobhan Roberts - 2015
    He discovered the Conway groups in mathematical symmetry, and invented the aptly named surreal numbers, as well as the cult classic Game of Life--more than a cool fad, Life demonstrates how simplicity generates complexity and the game provides an analogy for all mathematics and the entire universe. Moving to Princeton in 1987, as a mathemagician he deployed cards, ropes, dice, coat hangers, and even the odd Slinky as props to extend his winning imagination and share his mathy obsessions with signature contagion. He is a jet-setting ambassador-at-large for the beauties of all things mathematical.Genius At Play is an intimate investigation into the mind of an endearing genius, laying bare Conway's personal and professional idiosyncrasies. The intimacy comes courtesy of the man himself. He generously granted Roberts full access, though not without the occasional grudge and grumble: "Oh hell," he'd say. "You're not going to put that in the book. Are you?!?

Mathematics 1001: Absolutely Everything That Matters in Mathematics in 1001 Bite-Sized Explanations


Richard Elwes - 2010
    Distilled into 1001 mini-essays arranged thematically, this unique book moves steadily from the basics through to the most advanced areas of math, making it the ideal guide for both the beginner and the math wiz.The book covers all of the fundamental mathematical disciplines:Geometry Numbers Analysis Logic Algebra Probability and statistics Applied mathematics Discrete mathematics Games and recreational mathematics Philosophy and metamathematicsExpert mathematician Richard Elwes explains difficult concepts in the simplest language with a minimum of jargon. Along the way he reveals such mathematical magic as how to count to 1023 using just 10 fingers and how to make an unbreakable code.Enlightening and entertaining, Mathematics 1001 makes the language of math come alive.

A Student's Guide to Maxwell's Equations


Daniel Fleisch - 2007
    In this guide for students, each equation is the subject of an entire chapter, with detailed, plain-language explanations of the physical meaning of each symbol in the equation, for both the integral and differential forms. The final chapter shows how Maxwell's equations may be combined to produce the wave equation, the basis for the electromagnetic theory of light. This book is a wonderful resource for undergraduate and graduate courses in electromagnetism and electromagnetics. A website hosted by the author at www.cambridge.org/9780521701471 contains interactive solutions to every problem in the text as well as audio podcasts to walk students through each chapter.

Cubed: The Puzzle of Us All


Ernö Rubik - 2020
    Erno Rubik inspires us with what he’s learned in a lifetime of creating, curiosity, and discovery.Erno Rubik was a child when he first became obsessed with puzzles of all kinds. “Puzzles,” he writes, “bring out important qualities in each of us: concentration, curiosity, a sense of play, the eagerness to discover a solution.” To Rubik puzzles aren’t just games—they’re creativity machines. He encourages us to embrace our inner curiosity and find the puzzles that surround us in our everyday lives. “If you are determined, you will solve them,” he writes. Rubik’s own puzzle, the Cube, went on to be solved by millions worldwide for over forty years, become one of the bestselling toys of all time, and to be featured as a global symbol of intelligence and ingenuity.In Cubed, Rubik covers more than just his journey to inventing his eponymous cube. He makes a case for always being an amateur—something he has always considered himself to be. He discusses the inevitability of problems during any act of invention. He reveals what it was like to experience the astonishing worldwide success of an object he made purely for his own play. And he offers what he thinks it means to be a true creator (hint: anyone can do it). Steeped in the wisdom and also the humility of a born inventor, Cubed offers a unique look at the imperfect science of creation.

The Joy of Pi


David Blatner - 1997
    Pi-or ? as it is symbolically known-is infinite and, in The Joy of pi, it proves to be infinitely intriguing. With incisive historical insight and a refreshing sense of humor, David Blatner explores the many facets of pi and humankind's fascination with it-from the ancient Egyptians and Archimedes to Leonardo da Vinci and the modern-day Chudnovsky brothers, who have calculated pi to eight billion digits with a homemade supercomputer.The Joy of Pi is a book of many parts. Breezy narratives recount the history of pi and the quirky stories of those obsessed with it. Sidebars document fascinating pi trivia (including a segment from the 0. J. Simpson trial). Dozens of snippets and factoids reveal pi's remarkable impact over the centuries. Mnemonic devices teach how to memorize pi to many hundreds of digits (or more, if you're so inclined). Pi-inspired cartoons, poems, limericks, and jokes offer delightfully "square" pi humor. And, to satisfy even the most exacting of number jocks, the first one million digits of pi appear throughout the book.A tribute to all things pi, The Joy of pi is sure to foster a newfound affection and respect for the big number with the funny little symbol.

The Inexplicable Universe: Unsolved Mysteries


Neil deGrasse Tyson - 2012
    And with the advent of modern science, great minds have turned to testing and experimentation rather than mere thought as a way of approaching and grappling with some of the universe's most pressing and vexing dilemmas. So what is our latest picture of some of the most inexplicable features of the universe? What still remains to be uncovered? What are some of the next avenues of exploration for today's chemists, physicists, biologists, and astronomers? Pondering the answers to these and other questions is a great way to appreciate the grandeur and complexity of the world around you, better understand and discuss news and developments in science, and spark further interest in some of science's many exciting areas of study. "We know a lot about the universe. But there's even more that we don't know,"says astrophysicist and Professor Neil deGrasse Tyson, director of the Hayden Planetarium, an award-winning lecturer, and one of the world's foremost experts on the secrets of the universe. And his course The Inexplicable Universe: Unsolved Mysteries is the perfect gateway into this mind-bending and eye-opening subject. Each of these six self-contained lectures is a marvelous journey to the frontiers of the known (and unknown) universe and introduces you to tantalizing questions being addressed by the world's top scientists. Undeniably engaging and fascinating, this lecture series is a wonderful entrée to scientific pursuits that lie at the very heart of the history and nature of our universe. An Informed Scientific Conversation Central to The Inexplicable Universe is the way it takes you deep into hidden layers of the universe in a manner that is extremely accessible. Rather than a stern lecture given before a podium complete with confusing mathematics, Professor Tyson's lectures have the feel of an informed conversation that manages to be both thorough and easy to grasp. With each of the inexplicable mysteries he lays bare for you, Professor Tyson introduces you to the history behind it, lays out the science that has helped us grasp it, explains what researchers have discovered to date, and reveals what we have yet to discover. And while the topics explore subjects in everything from quantum mechanics to cosmology to string theory, you'll never feel overwhelmed by what you're learning. In fact, you're more likely to find yourself intrigued by just how much we know-and curious about what the near future will possibly reveal. Explore Fascinating Territory So what territory will you chart in this course? Here are some of the inexplicable ideas you'll investigate in these lectures. Neutrinos: Discovered in 1956, these fast-moving, ghostlike particles are made in abundance in the sun's core. They hardly interact with matter; it takes a light-year's worth of lead (5.8 trillion miles) to stop a neutrino. Not only that, but 65 billion neutrinos pass through every centimeter of your body that's facing the sun every second of every day. String theory: This astounding theory offers the hope of unifying all the particles and forces of physics. In the past several decades since the dawn of string theory, it's been imagined that all the fundamental particles we see and measure are just the manifestation in our dimension of strings vibrating in higher dimensions and at different frequencies. Quantum foam: This idea posits that when the fabric of space and time is so tightly curved on itself, space-time is less a smooth curve and more like the froth on a latte. In this state of matter and energy, quantum fluctuations can spawn entire universes, each with slightly different laws of physics within them! In addition, you'll also get a peek at what it would be like to travel through a black hole, ponder the possibility that life on Earth originated in debris from Mars, probe the supposed existence of multiple universes, and even imagine the possible end of the universe itself. A One-on-One Chat with a Renowned Science Educator Professor Tyson is renowned throughout the scientific community and the media for his vast knowledge, his penetrating insights, and his amazing ability to make even the most intimidating areas of science accessible, engaging, and-most of all-enjoyable. He brings the same inviting tone and sharp intellect to The Inexplicable Universe as he does to his range of media appearances on popular television programs. Due to its unique subject matter The Inexplicable Universe takes a highly visual approach. Many of the fascinating subjects in the course, such as black holes, string theory, and multiple universes are best demonstrated visually and Professor Tyson's lectures feature expertly crafted computer animations, explanatory diagrams, high resolution photographs, and other instructive visual elements. In order to better explain to you some of the grand, intricate ideas being discussed, Professor Tyson personally interacts with many of these animations and graphics using greenscreen technology. Please note that, due to the highly visual nature of The Inexplicable Universe, the course does not come with a guidebook. We did not believe a simple book could adequately convey the information in the course, and rather than make a guidebook that did not do the course justice, we decided to not offer one. However, we believe that you will be very excited by how we produced this course and will find it to be an enriching and fulfilling experience in your educational journey.

The Amazing Story of Quantum Mechanics: A Math-Free Exploration of the Science that Made Our World


James Kakalios - 2010
    Using illustrations and examples from science fiction pulp magazines and comic books, The Amazing Story of Quantum Mechanics explains the fundamental principles of quantum mechanics that underlie the world we live in.Watch a Video