Book picks similar to
Modern B-Tree Techniques by Goetz Graefe
algorithms
roberts-it-books
trade
big-data
Mastering Algorithms with C
Kyle Loudon - 1999
Mastering Algorithms with C offers you a unique combination of theoretical background and working code. With robust solutions for everyday programming tasks, this book avoids the abstract style of most classic data structures and algorithms texts, but still provides all of the information you need to understand the purpose and use of common programming techniques.Implementations, as well as interesting, real-world examples of each data structure and algorithm, are included.Using both a programming style and a writing style that are exceptionally clean, Kyle Loudon shows you how to use such essential data structures as lists, stacks, queues, sets, trees, heaps, priority queues, and graphs. He explains how to use algorithms for sorting, searching, numerical analysis, data compression, data encryption, common graph problems, and computational geometry. And he describes the relative efficiency of all implementations. The compression and encryption chapters not only give you working code for reasonably efficient solutions, they offer explanations of concepts in an approachable manner for people who never have had the time or expertise to study them in depth.Anyone with a basic understanding of the C language can use this book. In order to provide maintainable and extendible code, an extra level of abstraction (such as pointers to functions) is used in examples where appropriate. Understanding that these techniques may be unfamiliar to some programmers, Loudon explains them clearly in the introductory chapters.Contents include:PointersRecursionAnalysis of algorithmsData structures (lists, stacks, queues, sets, hash tables, trees, heaps, priority queues, graphs)Sorting and searchingNumerical methodsData compressionData encryptionGraph algorithmsGeometric algorithms
Data Science for Business: What you need to know about data mining and data-analytic thinking
Foster Provost - 2013
This guide also helps you understand the many data-mining techniques in use today.Based on an MBA course Provost has taught at New York University over the past ten years, Data Science for Business provides examples of real-world business problems to illustrate these principles. You’ll not only learn how to improve communication between business stakeholders and data scientists, but also how participate intelligently in your company’s data science projects. You’ll also discover how to think data-analytically, and fully appreciate how data science methods can support business decision-making.Understand how data science fits in your organization—and how you can use it for competitive advantageTreat data as a business asset that requires careful investment if you’re to gain real valueApproach business problems data-analytically, using the data-mining process to gather good data in the most appropriate wayLearn general concepts for actually extracting knowledge from dataApply data science principles when interviewing data science job candidates
Think Stats
Allen B. Downey - 2011
This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data
Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People
Aditya Y. Bhargava - 2015
The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.
Purely Functional Data Structures
Chris Okasaki - 1996
However, data structures for these languages do not always translate well to functional languages such as Standard ML, Haskell, or Scheme. This book describes data structures from the point of view of functional languages, with examples, and presents design techniques that allow programmers to develop their own functional data structures. The author includes both classical data structures, such as red-black trees and binomial queues, and a host of new data structures developed exclusively for functional languages. All source code is given in Standard ML and Haskell, and most of the programs are easily adaptable to other functional languages. This handy reference for professional programmers working with functional languages can also be used as a tutorial or for self-study.
Head First Data Analysis: A Learner's Guide to Big Numbers, Statistics, and Good Decisions
Michael G. Milton - 2009
If your job requires you to manage and analyze all kinds of data, turn to Head First Data Analysis, where you'll quickly learn how to collect and organize data, sort the distractions from the truth, find meaningful patterns, draw conclusions, predict the future, and present your findings to others. Whether you're a product developer researching the market viability of a new product or service, a marketing manager gauging or predicting the effectiveness of a campaign, a salesperson who needs data to support product presentations, or a lone entrepreneur responsible for all of these data-intensive functions and more, the unique approach in Head First Data Analysis is by far the most efficient way to learn what you need to know to convert raw data into a vital business tool. You'll learn how to:Determine which data sources to use for collecting information Assess data quality and distinguish signal from noise Build basic data models to illuminate patterns, and assimilate new information into the models Cope with ambiguous information Design experiments to test hypotheses and draw conclusions Use segmentation to organize your data within discrete market groups Visualize data distributions to reveal new relationships and persuade others Predict the future with sampling and probability models Clean your data to make it useful Communicate the results of your analysis to your audience Using the latest research in cognitive science and learning theory to craft a multi-sensory learning experience, Head First Data Analysis uses a visually rich format designed for the way your brain works, not a text-heavy approach that puts you to sleep.
Producing Open Source Software: How to Run a Successful Free Software Project
Karl Fogel - 2005
Each is the result of a publicly collaborative process among numerous developers who volunteer their time and energy to create better software.The truth is, however, that the overwhelming majority of free software projects fail. To help you beat the odds, O'Reilly has put together Producing Open Source Software, a guide that recommends tried and true steps to help free software developers work together toward a common goal. Not just for developers who are considering starting their own free software project, this book will also help those who want to participate in the process at any level.The book tackles this very complex topic by distilling it down into easily understandable parts. Starting with the basics of project management, it details specific tools used in free software projects, including version control, IRC, bug tracking, and Wikis. Author Karl Fogel, known for his work on CVS and Subversion, offers practical advice on how to set up and use a range of tools in combination with open mailing lists and archives. He also provides several chapters on the essentials of recruiting and motivating developers, as well as how to gain much-needed publicity for your project.While managing a team of enthusiastic developers -- most of whom you've never even met -- can be challenging, it can also be fun. Producing Open Source Software takes this into account, too, as it speaks of the sheer pleasure to be had from working with a motivated team of free software developers.
Designing Virtual Worlds
Richard Bartle - 2003
It's a tour de force of VW design, stunning in intellectual scope, spanning the literary, economic, sociological, psychological, physical, technological, and ethical underpinnings of design, while providing the reader with a deep, well-grounded understanding of VW design principles. It covers everything from MUDs to MOOs to MMORPGs, from text-based to graphical VWs.Designing Virtual Worlds brings a rich, well-developed approach to the design concepts behind virtual worlds. It is grounded in the earliest approaches to such designs, but the examples discussed in the book run the gamut from the earliest MUDs to the present-day MMORPG games mentioned above. It teaches the reader the actual, underlying design principles that many designers do not understand when they borrow or build from previous games. There is no other design book on the market in the area of online games and virtual worlds that provides the rich detail, historical context, and conceptual depth of Designing Virtual Worlds.
Algorithms to Live By: The Computer Science of Human Decisions
Brian Christian - 2016
What should we do, or leave undone, in a day or a lifetime? How much messiness should we accept? What balance of new activities and familiar favorites is the most fulfilling? These may seem like uniquely human quandaries, but they are not: computers, too, face the same constraints, so computer scientists have been grappling with their version of such issues for decades. And the solutions they've found have much to teach us.In a dazzlingly interdisciplinary work, acclaimed author Brian Christian and cognitive scientist Tom Griffiths show how the algorithms used by computers can also untangle very human questions. They explain how to have better hunches and when to leave things to chance, how to deal with overwhelming choices and how best to connect with others. From finding a spouse to finding a parking spot, from organizing one's inbox to understanding the workings of memory, Algorithms to Live By transforms the wisdom of computer science into strategies for human living.
Essentials of Programming Languages
Daniel P. Friedman - 1992
The approach is analytic and hands-on. The text uses interpreters, written in Scheme, to express the semantics of many essential language elements in a way that is both clear and directly executable. It also examines some important program analyses. Extensive exercises explore many design and implementation alternatives.
Race Against The Machine
Erik Brynjolfsson - 2011
Drawing on research by their team at the Center for Digital Business, they show that there's been no stagnation in technology -- in fact, the digital revolution is accelerating. Recent advances are the stuff of science fiction: computers now drive cars in traffic, translate between human languages effectively, and beat the best human Jeopardy! players.As these examples show, digital technologies are rapidly encroaching on skills that used to belong to humans alone. This phenomenon is both broad and deep, and has profound economic implications. Many of these implications are positive; digital innovation increases productivity, reduces prices (sometimes to zero), and grows the overall economic pie.But digital innovation has also changed how the economic pie is distributed, and here the news is not good for the median worker. As technology races ahead, it can leave many people behind. Workers whose skills have been mastered by computers have less to offer the job market, and see their wages and prospects shrink. Entrepreneurial business models, new organizational structures and different institutions are needed to ensure that the average worker is not left behind by cutting-edge machines.In Race Against the Machine Brynjolfsson and McAfee bring together a range of statistics, examples, and arguments to show that technological progress is accelerating, and that this trend has deep consequences for skills, wages, and jobs. The book makes the case that employment prospects are grim for many today not because there's been technology has stagnated, but instead because we humans and our organizations aren't keeping up.
Taming Text: How to Find, Organize, and Manipulate It
Grant S. Ingersoll - 2011
This causes real problems for everyday users who need to make sense of all the information available, and for software engineers who want to make their text-based applications more useful and user-friendly. Whether building a search engine for a corporate website, automatically organizing email, or extracting important nuggets of information from the news, dealing with unstructured text can be daunting.Taming Text is a hands-on, example-driven guide to working with unstructured text in the context of real-world applications. It explores how to automatically organize text, using approaches such as full-text search, proper name recognition, clustering, tagging, information extraction, and summarization. This book gives examples illustrating each of these topics, as well as the foundations upon which they are built.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Production-Ready Microservices: Building Standardized Systems Across an Engineering Organization
Susan Fowler - 2016
After splitting a monolithic application or building a microservice ecosystem from scratch, many engineers are left wondering what s next. In this practical book, author Susan Fowler presents a set of microservice standards in depth, drawing from her experience standardizing over a thousand microservices at Uber. You ll learn how to design microservices that are stable, reliable, scalable, fault tolerant, performant, monitored, documented, and prepared for any catastrophe.Explore production-readiness standards, including:Stability and Reliability: develop, deploy, introduce, and deprecate microservices; protect against dependency failuresScalability and Performance: learn essential components for achieving greater microservice efficiencyFault Tolerance and Catastrophe Preparedness: ensure availability by actively pushing microservices to fail in real timeMonitoring: learn how to monitor, log, and display key metrics; establish alerting and on-call proceduresDocumentation and Understanding: mitigate tradeoffs that come with microservice adoption, including organizational sprawl and technical debt"
Elements of Programming Interviews in Java: The Insiders' Guide
Adnan Aziz - 2015
See the website for links to the C++ version, as well as to a version that uses larger fonts.Have you ever...Wanted to work at an exciting futuristic company?Struggled with an interview problem thatcould have been solved in 15 minutes?Wished you could study real-world computing problems?If so, you need to read Elements of Programming Interviews (EPI).EPI is your comprehensive guide to interviewing for software development roles.The core of EPI is a collection of over 250 problems with detailed solutions. The problems are representative of interview questions asked at leading software companies. The problems are illustrated with 200 figures, 300 tested programs, and 150 additional variants.The book begins with a summary of the nontechnical aspects of interviewing, such as strategies for a great interview, common mistakes, perspectives from the other side of the table, tips on negotiating the best offer, and a guide to the best ways to use EPI. We also provide a summary of data structures, algorithms, and problem solving patterns.Coding problems are presented through a series of chapters on basic and advanced data structures, searching, sorting, algorithm design principles, and concurrency. Each chapter stars with a brief introduction, a case study, top tips, and a review of the most important library methods. This is followed by a broad and thought-provoking set of problems.A practical, fun approach to computer science fundamentals, as seen through the lens of common programming interview questions. Jeff Atwood/Co-founder, Stack Overflow and Discourse