Book picks similar to
Science Without Numbers: A Defence Of Nominalism by Hartry Field


philosophy
mathematics
philosophy-of-mathematics
analytic-philosophy

From a Logical Point of View: Nine Logico-Philosophical Essays


Willard Van Orman Quine - 1953
    At the same time adjacent portions of philosophy and logic are discussed. To the existence of what objects may a given scientific theory be said to be committed? And what considerations may suitably guide us in accepting or revising such ontological commitments? These are among the questions dealt with in this book, particular attention being devoted to the role of abstract entities in mathematics. There is speculation on the mechanism whereby objects of one sort or another come to be posited a process in which the notion of identity plays an important part."This volume of essays has a unity and bears throughout the imprint of Quine's powerful and original mind. It is written with the felicity in the choice of words which makes everything that Quine writes a pleasure to read, and which ranks him among the best contemporary writers on abstract subjects." (Cambridge Review)"Professor Quine's challenging and original views are here for the first time presented as a unity. The chief merit of the book is the heart-searching from which it arose and to which it will give rise. In vigour, conciseness, and clarity, it is characteristic of its author." (Oxford Magazine)

An Introduction to Probability and Inductive Logic


Ian Hacking - 2001
    The book has been designed to offer maximal accessibility to the widest range of students (not only those majoring in philosophy) and assumes no formal training in elementary symbolic logic. It offers a comprehensive course covering all basic definitions of induction and probability, and considers such topics as decision theory, Bayesianism, frequency ideas, and the philosophical problem of induction. The key features of the book are: * A lively and vigorous prose style* Lucid and systematic organization and presentation of the ideas* Many practical applications* A rich supply of exercises drawing on examples from such fields as psychology, ecology, economics, bioethics, engineering, and political science* Numerous brief historical accounts of how fundamental ideas of probability and induction developed.* A full bibliography of further reading Although designed primarily for courses in philosophy, the book could certainly be read and enjoyed by those in the social sciences (particularly psychology, economics, political science and sociology) or medical sciences such as epidemiology seeking a reader-friendly account of the basic ideas of probability and induction. Ian Hacking is University Professor, University of Toronto. He is Fellow of the Royal Society of Canada, Fellow of the British Academy, and Fellow of the American Academy of Arts and Sciences. he is author of many books including five previous books with Cambridge (The Logic of Statistical Inference, Why Does Language Matter to Philosophy?, The Emergence of Probability, Representing and Intervening, and The Taming of Chance).

The Logical Structure of the World and Pseudoproblems in Philosophy


Rudolf Carnap - 1928
    In The Logical Structure of the World, Carnap adopts the position of “methodological solipsism” and shows that it is possible to describe the world from the immediate data of experience. In his Pseudoproblems in Philosophy, he asserts that many philosophical problems are meaningless.

Gamma: Exploring Euler's Constant


Julian Havil - 2003
    Following closely behind is y, or gamma, a constant that arises in many mathematical areas yet maintains a profound sense of mystery. In a tantalizing blend of history and mathematics, Julian Havil takes the reader on a journey through logarithms and the harmonic series, the two defining elements of gamma, toward the first account of gamma's place in mathematics. Introduced by the Swiss mathematician Leonhard Euler (1707-1783), who figures prominently in this book, gamma is defined as the limit of the sum of 1 + 1/2 + 1/3 + . . . Up to 1/n, minus the natural logarithm of n--the numerical value being 0.5772156. . . . But unlike its more celebrated colleagues π and e, the exact nature of gamma remains a mystery--we don't even know if gamma can be expressed as a fraction. Among the numerous topics that arise during this historical odyssey into fundamental mathematical ideas are the Prime Number Theorem and the most important open problem in mathematics today--the Riemann Hypothesis (though no proof of either is offered!). Sure to be popular with not only students and instructors but all math aficionados, Gamma takes us through countries, centuries, lives, and works, unfolding along the way the stories of some remarkable mathematics from some remarkable mathematicians.-- "Notices of the American Mathematical Society"

The Conscious Mind: In Search of a Fundamental Theory


David J. Chalmers - 1996
    Dennett, Gerald Edelman, and Roger Penrose, all firing volleys in what has come to be called the consciousness wars. Now, in The Conscious Mind, philosopher David J. Chalmers offers a cogent analysis of this heated debate as he unveils a major new theory of consciousness, one that rejects the prevailing reductionist trend of science, while offering provocative insights into the relationship between mind and brain.Writing in a rigorous, thought-provoking style, the author takes us on a far-reaching tour through the philosophical ramifications of consciousness. Chalmers convincingly reveals how contemporary cognitive science and neurobiology have failed to explain how and why mental events emerge from physiological occurrences in the brain. He proposes instead that conscious experience must be understood in an entirely new light--as an irreducible entity (similar to such physical properties as time, mass, and space) that exists at a fundamental level and cannot be understood as the sum of its parts. And after suggesting some intriguing possibilities about the structure and laws of conscious experience, he details how his unique reinterpretation of the mind could be the focus of a new science. Throughout the book, Chalmers provides fascinating thought experiments that trenchantly illustrate his ideas. For example, in exploring the notion that consciousness could be experienced by machines as well as humans, Chalmers asks us to imagine a thinking brain in which neurons are slowly replaced by silicon chips that precisely duplicate their functions--as the neurons are replaced, will consciousness gradually fade away? The book also features thoughtful discussions of how the author's theories might be practically applied to subjects as diverse as artificial intelligence and the interpretation of quantum mechanics.All of us have pondered the nature and meaning of consciousness. Engaging and penetrating, The Conscious Mind adds a fresh new perspective to the subject that is sure to spark debate about our understanding of the mind for years to come.

Mathematics and Its History


John Stillwell - 1997
    Even when dealing with standard material, Stillwell manages to dramatize it and to make it worth rethinking. In short, his book is a splendid addition to the genre of works that build royal roads to mathematical culture for the many." (Mathematical Intelligencer)This second edition includes new chapters on Chinese and Indian number theory, on hypercomplex numbers, and on algebraic number theory. Many more exercises have been added, as well as commentary to the exercises explaining how they relate to the preceding section, and how they foreshadow later topics.

Concepts of Modern Mathematics


Ian Stewart - 1975
    Based on the abstract, general style of mathematical exposition favored by research mathematicians, its goal was to teach students not just to manipulate numbers and formulas, but to grasp the underlying mathematical concepts. The result, at least at first, was a great deal of confusion among teachers, students, and parents. Since then, the negative aspects of "new math" have been eliminated and its positive elements assimilated into classroom instruction.In this charming volume, a noted English mathematician uses humor and anecdote to illuminate the concepts underlying "new math": groups, sets, subsets, topology, Boolean algebra, and more. According to Professor Stewart, an understanding of these concepts offers the best route to grasping the true nature of mathematics, in particular the power, beauty, and utility of pure mathematics. No advanced mathematical background is needed (a smattering of algebra, geometry, and trigonometry is helpful) to follow the author's lucid and thought-provoking discussions of such topics as functions, symmetry, axiomatics, counting, topology, hyperspace, linear algebra, real analysis, probability, computers, applications of modern mathematics, and much more.By the time readers have finished this book, they'll have a much clearer grasp of how modern mathematicians look at figures, functions, and formulas and how a firm grasp of the ideas underlying "new math" leads toward a genuine comprehension of the nature of mathematics itself.

Gödel's Proof


Ernest Nagel - 1958
    Gödel received public recognition of his work in 1951 when he was awarded the first Albert Einstein Award for achievement in the natural sciences--perhaps the highest award of its kind in the United States. The award committee described his work in mathematical logic as "one of the greatest contributions to the sciences in recent times."However, few mathematicians of the time were equipped to understand the young scholar's complex proof. Ernest Nagel and James Newman provide a readable and accessible explanation to both scholars and non-specialists of the main ideas and broad implications of Gödel's discovery. It offers every educated person with a taste for logic and philosophy the chance to understand a previously difficult and inaccessible subject.New York University Press is proud to publish this special edition of one of its bestselling books. With a new introduction by Douglas R. Hofstadter, this book will appeal students, scholars, and professionals in the fields of mathematics, computer science, logic and philosophy, and science.

The Nature of Necessity


Alvin Plantinga - 1974
    The arguement is developed by means of the notion of possible worlds and ranges over key problems including the nature of essence, trans-world identity, negative existential propositions, and the existence of unactual objects in other possible worlds. In the final chapters Professor Plantinga applies his logical theories to the elucidation of two problems in the philosophy of religion: the Problem of Evil and the Ontological Arguement. The first of these, the problem of reconciling the moral perfection and omnipotence of God with the existence of evil, can, he concludes, be resolved, and the second given a sound formulation. The book ends with an appendix on Quine's objection to quantified modal logic.

Gödel's Theorem: An Incomplete Guide to Its Use and Abuse


Torkel Franzén - 2005
    With exceptional clarity, Franz n gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of "Logical Dilemmas: The Life and Work of Kurt G del

The Art and Craft of Problem Solving


Paul Zeitz - 1999
    Readers are encouraged to do math rather than just study it. The author draws upon his experience as a coach for the International Mathematics Olympiad to give students an enhanced sense of mathematics and the ability to investigate and solve problems.

Principia Mathematica to '56


Alfred North Whitehead - 1913
    Its aim is to deduce all the fundamental propositions of logic and mathematics from a small number of logical premises and primitive ideas, establishing that mathematics is a development of logic. This abridged text of Volume I contains the material that is most relevant to an introductory study of logic and the philosophy of mathematics (more advanced students will of course wish to refer to the complete edition). It contains the whole of the preliminary sections (which present the authors' justification of the philosophical standpoint adopted at the outset of their work); the whole of Part I (in which the logical properties of propositions, propositional functions, classes and relations are established); section A of Part II (dealing with unit classes and couples); and Appendices A and C (which give further developments of the argument on the theory of deduction and truth functions).

Probability Theory: The Logic of Science


E.T. Jaynes - 1999
    It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.

On Numbers and Games


John H. Conway - 1976
    Originally written to define the relation between the theories of transfinite numbers and mathematical games, the resulting work is a mathematically sophisticated but eminently enjoyable guide to game theory. By defining numbers as the strengths of positions in certain games, the author arrives at a new class, the surreal numbers, that includes both real numbers and ordinal numbers. These surreal numbers are applied in the author's mathematical analysis of game strategies. The additions to the Second Edition present recent developments in the area of mathematical game theory, with a concentration on surreal numbers and the additive theory of partizan games.

Introduction to Logic: and to the Methodology of Deductive Sciences


Alfred Tarski - 1993
    According to the author, these trends sought to create a unified conceptual apparatus as a common basis for the whole of human knowledge.Because these new developments in logical thought tended to perfect and sharpen the deductive method, an indispensable tool in many fields for deriving conclusions from accepted assumptions, the author decided to widen the scope of the work. In subsequent editions he revised the book to make it also a text on which to base an elementary college course in logic and the methodology of deductive sciences. It is this revised edition that is reprinted here.Part One deals with elements of logic and the deductive method, including the use of variables, sentential calculus, theory of identity, theory of classes, theory of relations and the deductive method. The Second Part covers applications of logic and methodology in constructing mathematical theories, including laws of order for numbers, laws of addition and subtraction, methodological considerations on the constructed theory, foundations of arithmetic of real numbers, and more. The author has provided numerous exercises to help students assimilate the material, which not only provides a stimulating and thought-provoking introduction to the fundamentals of logical thought, but is the perfect adjunct to courses in logic and the foundation of mathematics.