Book picks similar to
The Org Mode 9 Reference Manual: Organize Your Life with GNU Emacs by Carsten Dominik
buffer
devtools
engineering
partially-read
Exceptional C++: 47 Engineering Puzzles, Programming Problems, and Solutions
Herb Sutter - 1999
Do you enjoy solving thorny C++ problems and puzzles? Do you relish writing robust and extensible code? Then take a few minutes and challenge yourself with some tough C++ design and programming problems. The puzzles and problems in Exceptional C++ not only entertain, they will help you hone your skills to become the sharpest C++ programmer you can be. Many of these problems are culled from the famous Guru of the Week feature of the Internet newsgroup comp.lang.c++.moderated, expanded and updated to conform to the official ISO/ANSI C++ Standard. Each problem is rated according to difficulty and is designed to illustrate subtle programming mistakes or design considerations. After youve had a chance to attempt a solution yourself, the book then dissects the code, illustrates what went wrong, and shows how the problem can be fixed. Covering a broad range of C++ topics, the problems and solutions address critical issues such as: *Generic programming and how to write reusable templates *Exception safety issues and techniques *Robust class design and inheritance *Compiler firewalls and the Pimpl I
MATLAB: A Practical Introduction to Programming and Problem Solving
Stormy Attaway - 2009
It is the only book that gives a full introduction to programming in MATLAB combined with an explanation of MATLAB's powerful functions. The book differs from other texts in that it teaches programming concepts and the use of the built-in functions in MATLAB simultaneously. It presents programming concepts and MATLAB built-in functions side-by-side, giving students the ability to program efficiently and exploit the power of MATLAB to solve problems. The systematic, step-by-step approach, building on concepts throughout the book, facilitates easier learning.Starting with basic programming concepts, such as variables, assignments, input/output, selection, and loop statements, problems are introduced and solved throughout the book. The book is organized into two parts. Part I covers the programming constructs and demonstrates programming versus efficient use of built-in functions to solve problems. Part II describes the applications, including plotting, image processing, and mathematics, needed in basic problem solving. The chapters feature sections called Quick Question! as well as practice problems designed to test knowledge about the material covered. Problems are solved using both The Programming Concept and The Efficient Method, which facilitates understanding the efficient ways of using MATLAB, and also the programming concepts used in these efficient functions and operators. There are also sections on 'common pitfalls' and 'programming guidelines' that direct students towards best practice.This book is ideal for engineers learning to program and model in MATLAB, as well as undergraduates in engineering and science taking a course on MATLAB.
Probabilistic Graphical Models: Principles and Techniques
Daphne Koller - 2009
The framework of probabilistic graphical models, presented in this book, provides a general approach for this task. The approach is model-based, allowing interpretable models to be constructed and then manipulated by reasoning algorithms. These models can also be learned automatically from data, allowing the approach to be used in cases where manually constructing a model is difficult or even impossible. Because uncertainty is an inescapable aspect of most real-world applications, the book focuses on probabilistic models, which make the uncertainty explicit and provide models that are more faithful to reality.Probabilistic Graphical Models discusses a variety of models, spanning Bayesian networks, undirected Markov networks, discrete and continuous models, and extensions to deal with dynamical systems and relational data. For each class of models, the text describes the three fundamental cornerstones: representation, inference, and learning, presenting both basic concepts and advanced techniques. Finally, the book considers the use of the proposed framework for causal reasoning and decision making under uncertainty. The main text in each chapter provides the detailed technical development of the key ideas. Most chapters also include boxes with additional material: skill boxes, which describe techniques; case study boxes, which discuss empirical cases related to the approach described in the text, including applications in computer vision, robotics, natural language understanding, and computational biology; and concept boxes, which present significant concepts drawn from the material in the chapter. Instructors (and readers) can group chapters in various combinations, from core topics to more technically advanced material, to suit their particular needs.
Spark: The Definitive Guide: Big Data Processing Made Simple
Bill Chambers - 2018
With an emphasis on improvements and new features in Spark 2.0, authors Bill Chambers and Matei Zaharia break down Spark topics into distinct sections, each with unique goals.
You’ll explore the basic operations and common functions of Spark’s structured APIs, as well as Structured Streaming, a new high-level API for building end-to-end streaming applications. Developers and system administrators will learn the fundamentals of monitoring, tuning, and debugging Spark, and explore machine learning techniques and scenarios for employing MLlib, Spark’s scalable machine-learning library.
Get a gentle overview of big data and Spark
Learn about DataFrames, SQL, and Datasets—Spark’s core APIs—through worked examples
Dive into Spark’s low-level APIs, RDDs, and execution of SQL and DataFrames
Understand how Spark runs on a cluster
Debug, monitor, and tune Spark clusters and applications
Learn the power of Structured Streaming, Spark’s stream-processing engine
Learn how you can apply MLlib to a variety of problems, including classification or recommendation
Operating System Concepts
Abraham Silberschatz - 1985
By staying current, remaining relevant, and adapting to emerging course needs, this market-leading text has continued to define the operating systems course. This Seventh Edition not only presents the latest and most relevant systems, it also digs deeper to uncover those fundamental concepts that have remained constant throughout the evolution of today's operation systems. With this strong conceptual foundation in place, students can more easily understand the details related to specific systems. New Adaptations * Increased coverage of user perspective in Chapter 1. * Increased coverage of OS design throughout. * A new chapter on real-time and embedded systems (Chapter 19). * A new chapter on multimedia (Chapter 20). * Additional coverage of security and protection. * Additional coverage of distributed programming. * New exercises at the end of each chapter. * New programming exercises and projects at the end of each chapter. * New student-focused pedagogy and a new two-color design to enhance the learning process.
MySQL
Paul DuBois - 1999
As an important contributor to the online documentation for MySQL, Paul uses his day-to-day experience answering questions users post on the MySQL mailing list to pinpoint the problems most users and administrators encounter. The principal MySQL developer, Monty Widenius, along with a network of his fellow developers, reviewed the manuscript, providing Paul with the kind of insight no one else could supply. Instead of merely giving you a general overview of MySQL, Paul teaches you how to make the most of its capabilities. Through two sample databases that run throughout the book, he gives you solutions to problems you'll likely face. He helps you integrate MySQL efficiently with third-party tools, such as PHP and Perl, enabling you to generate dynamic Web pages through database queries. He also teaches you to write programs that access MySQL databases.
Algorithms
Sanjoy Dasgupta - 2006
Emphasis is placed on understanding the crisp mathematical idea behind each algorithm, in a manner that is intuitive and rigorous without being unduly formal. Features include: The use of boxes to strengthen the narrative: pieces that provide historical context, descriptions of how the algorithms are used in practice, and excursions for the mathematically sophisticated.Carefully chosen advanced topics that can be skipped in a standard one-semester course, but can be covered in an advanced algorithms course or in a more leisurely two-semester sequence.An accessible treatment of linear programming introduces students to one of the greatest achievements in algorithms. An optional chapter on the quantum algorithm for factoring provides a unique peephole into this exciting topic. In addition to the text, DasGupta also offers a Solutions Manual, which is available on the Online Learning Center.Algorithms is an outstanding undergraduate text, equally informed by the historical roots and contemporary applications of its subject. Like a captivating novel, it is a joy to read. Tim Roughgarden Stanford University
Learning Perl
Randal L. Schwartz - 1993
Written by three prominent members of the Perl community who each have several years of experience teaching Perl around the world, this edition has been updated to account for all the recent changes to the language up to Perl 5.8.Perl is the language for people who want to get work done. It started as a tool for Unix system administrators who needed something powerful for small tasks. Since then, Perl has blossomed into a full-featured programming language used for web programming, database manipulation, XML processing, and system administration--on practically all platforms--while remaining the favorite tool for the small daily tasks it was designed for. You might start using Perl because you need it, but you'll continue to use it because you love it.Informed by their years of success at teaching Perl as consultants, the authors have re-engineered the Llama to better match the pace and scope appropriate for readers getting started with Perl, while retaining the detailed discussion, thorough examples, and eclectic wit for which the Llama is famous.The book includes new exercises and solutions so you can practice what you've learned while it's still fresh in your mind. Here are just some of the topics covered:Perl variable typessubroutinesfile operationsregular expressionstext processingstrings and sortingprocess managementusing third party modulesIf you ask Perl programmers today what book they relied on most when they were learning Perl, you'll find that an overwhelming majority will point to the Llama. With good reason. Other books may teach you to program in Perl, but this book will turn you into a Perl programmer.
Kotlin for Android Developers: Learn Kotlin the easy way while developing an Android App
Antonio Leiva - 2016
Reinforcement Learning: An Introduction
Richard S. Sutton - 1998
Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications.Reinforcement learning, one of the most active research areas in artificial intelligence, is a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives when interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew Barto provide a clear and simple account of the key ideas and algorithms of reinforcement learning. Their discussion ranges from the history of the field's intellectual foundations to the most recent developments and applications. The only necessary mathematical background is familiarity with elementary concepts of probability.The book is divided into three parts. Part I defines the reinforcement learning problem in terms of Markov decision processes. Part II provides basic solution methods: dynamic programming, Monte Carlo methods, and temporal-difference learning. Part III presents a unified view of the solution methods and incorporates artificial neural networks, eligibility traces, and planning; the two final chapters present case studies and consider the future of reinforcement learning.
A Software Engineer Learns HTML5, JavaScript and jQuery
Dane Cameron - 2013
Due to their monopoly position in web browsers, and the fact web browsers have spread from PCs to phones, tablets and TVs; their status will continue to grow and grow. Despite their success, many software engineers are apprehensive about JavaScript and HTML. This apprehensiveness is not completely unfounded; both JavaScript and HTML were rushed in their early years, and driven by commercial rather than engineering interests. As a result, many dubious features crept into these languages. Due to backwards compatibility concerns, most of these features still remain. In addition, many software engineers have used these languages without ever learning them. JavaScript and HTML have low barriers to entry, and this, along with their similarity to other languages, led many software engineers to conclude that there really was nothing much to learn. If you have not used JavaScript and HTML for a number of years, or if you are a programmer or software engineer using other languages, you may be surprised at what they now offer. Browser based web applications are now capable of matching or exceeding the sophistication and scale of traditional desktop applications. In order to create complex web applications however, it is essential to learn these languages. This book takes the point of view that once you have a strong grasp of the fundamentals, the details will take care of themselves. It will not present you with long lists of APIs, or intricate details of every attribute, these can be found in reference manuals. It will focus on the details of each language that are fundamental to understanding how they work. This book will guide you through the process of developing a web application using HTML5, Javascript, jQuery and CSS. It contains the following content: 1. An introduction to the HTML5 markup language, and how it differs from HTML4 and XHTML. 2. An introduction to JavaScript, including an in-depth look at its use of objects and functions, along with the design patterns that support the development of robust web applications. 3. An introduction to jQuery selection, traversal, manipulation and events. 4. An in-depth look at the Web storage and IndexedDB APIs for client side data storage. 5. A guide to implementing offline web applications with the Application Cache API. 6. An introduction to the ways JavaScript can interact with the users file-system using the FileReader API. 7. The use of Web Workers in a web application to execute algorithms on background threads. 8. An introduction to AJAX, and the jQuery API supporting AJAX. 9. An introduction to Server Sent Events and Web Sockets. All subjects are introduced in the context of a sample web application. This book is intended for anyone with at least a superficial knowledge of HTML and programming.
Introduction to the Design and Analysis of Algorithms
Anany V. Levitin - 2002
KEY TOPICS: Written in a reader-friendly style, the book encourages broad problem-solving skills while thoroughly covering the material required for introductory algorithms. The author emphasizes conceptual understanding before the introduction of the formal treatment of each technique. Popular puzzles are used to motivate readers' interest and strengthen their skills in algorithmic problem solving. Other enhancement features include chapter summaries, hints to the exercises, and a solution manual. MARKET: For those interested in learning more about algorithms.
Pattern Recognition and Machine Learning
Christopher M. Bishop - 2006
However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten years. In particular, Bayesian methods have grown from a specialist niche to become mainstream, while graphical models have emerged as a general framework for describing and applying probabilistic models. Also, the practical applicability of Bayesian methods has been greatly enhanced through the development of a range of approximate inference algorithms such as variational Bayes and expectation propagation. Similarly, new models based on kernels have had a significant impact on both algorithms and applications. This new textbook reflects these recent developments while providing a comprehensive introduction to the fields of pattern recognition and machine learning. It is aimed at advanced undergraduates or first-year PhD students, as well as researchers and practitioners, and assumes no previous knowledge of pattern recognition or machine learning concepts. Knowledge of multivariate calculus and basic linear algebra is required, and some familiarity with probabilities would be helpful though not essential as the book includes a self-contained introduction to basic probability theory.
Absolute Java
Walter J. Savitch - 2003
Praised for providing an engaging balance of thoughtful examples and explanatory discussion, ?best-selling author Walter Savitch explains concepts and techniques in a straightforward style using understandable language and code enhanced by a suite of pedagogical tools.? "Absolute Java "is appropriate for both introductory and intermediate programming courses introducing Java.
Reversing: Secrets of Reverse Engineering
Eldad Eilam - 2005
The book is broken into two parts, the first deals with security-related reverse engineering and the second explores the more practical aspects of reverse engineering. In addition, the author explains how to reverse engineer a third-party software library to improve interfacing and how to reverse engineer a competitor's software to build a better product. * The first popular book to show how software reverse engineering can help defend against security threats, speed up development, and unlock the secrets of competitive products * Helps developers plug security holes by demonstrating how hackers exploit reverse engineering techniques to crack copy-protection schemes and identify software targets for viruses and other malware * Offers a primer on advanced reverse-engineering, delving into disassembly-code-level reverse engineering-and explaining how to decipher assembly language