Book picks similar to
Data Mining: Concepts, Models, Methods, and Algorithms by Mehmed Kantardzic
techrefs
testing-analytics
ay12-13
calibre-library
Python: For Beginners: A Crash Course Guide To Learn Python in 1 Week (coding, programming, web-programming, programmer)
Timothy C. Needham - 2017
It is very readable and the stress many beginners face about memorizing arcane syntax typically presented by other programming languages will not affect you at all. Conversely, you will be able to concentrate on learning concepts and paradigms of programming. This book shall introduce you to an easy way to learn Python in just 7 days and in this time, be able to complete your own projects! By reading the book and implementing what you learn herein, you will realize just why major institutions like NASA, Google, Mozilla, Yahoo, Dropbox, IBM, Facebook and many others prefer to use python in their core products, services and business processes. Let
Introductory Statistics with R
Peter Dalgaard - 2002
It can be freely downloaded and it works on multiple computer platforms. This book provides an elementary introduction to R. In each chapter, brief introductory sections are followed by code examples and comments from the computational and statistical viewpoint. A supplementary R package containing the datasets can be downloaded from the web.
A Byte of Python
Swaroop C.H. - 2004
An introduction to Python programming for beginners.
Practical Statistics for Data Scientists: 50 Essential Concepts
Peter Bruce - 2017
Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data
Python Algorithms: Mastering Basic Algorithms in the Python Language
Magnus Lie Hetland - 2010
Written by Magnus Lie Hetland, author of Beginning Python, this book is sharply focused on classical algorithms, but it also gives a solid understanding of fundamental algorithmic problem-solving techniques.The book deals with some of the most important and challenging areas of programming and computer science, but in a highly pedagogic and readable manner. The book covers both algorithmic theory and programming practice, demonstrating how theory is reflected in real Python programs. Well-known algorithms and data structures that are built into the Python language are explained, and the user is shown how to implement and evaluate others himself.
Bayesian Data Analysis
Andrew Gelman - 1995
Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include:Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collectionBayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.
Learning PHP and MySQL
Michele E. Davis - 2006
When working hand-in-hand, they serve as the standard for the rapid development of dynamic, database-driven websites. This combination is so popular, in fact, that it's attracting manyprogramming newbies who come from a web or graphic design background and whose first language is HTML. If you fall into this ever-expanding category, then this book is for you."Learning PHP and MySQL" starts with the very basics of the PHP language, including strings and arrays, pattern matching and a detailed discussion of the variances in different PHP versions. Next, it explains how to work with MySQL, covering information on SQL data access for language and data fundamentals like tables and statements.Finally, after it's sure that you've mastered these separate concepts, the book shows you how to put them together to generate dynamic content. In the process, you'll also learn about error handling, security, HTTP authentication, and more.If you're a hobbyist who is intimidated by thick, complex computer books, then this guide definitely belongs on your shelf. "Learning PHP and MySQL" explains everything--from basic concepts to the nuts and bolts of performing specific tasks--in plain English.Part of O'Reilly's bestselling Learning series, the book is an easy-to-use resource designed specifically for newcomers. It's also a launching pad for future learning, providing you with a solid foundation for more advanced development.
Architects of Intelligence: The truth about AI from the people building it
Martin Ford - 2018
of Toronto and Google), Rodney Brooks (Rethink Robotics), Yann LeCun (Facebook) , Fei-Fei Li (Stanford and Google), Yoshua Bengio (Univ. of Montreal), Andrew Ng (AI Fund), Daphne Koller (Stanford), Stuart Russell (UC Berkeley), Nick Bostrom (Univ. of Oxford), Barbara Grosz (Harvard), David Ferrucci (Elemental Cognition), James Manyika (McKinsey), Judea Pearl (UCLA), Josh Tenenbaum (MIT), Rana el Kaliouby (Affectiva), Daniela Rus (MIT), Jeff Dean (Google), Cynthia Breazeal (MIT), Oren Etzioni (Allen Institute for AI), Gary Marcus (NYU), and Bryan Johnson (Kernel).Martin Ford is a prominent futurist, and author of Financial Times Business Book of the Year, Rise of the Robots. He speaks at conferences and companies around the world on what AI and automation might mean for the future. Editorial reviews: "In his newest book, Architects of Intelligence, Martin Ford provides us with an invaluable opportunity to learn from some of the most prominent thought leaders about the emerging fields of science that are shaping our future."
-Al Gore, Former Vice President of the US
"AI is going to shape our future, and Architects of Intelligence offers a unique and fascinating collection of perspectives from the top researchers and entrepreneurs who are driving progress in the field."
- Eric Schmidt, former Chairman and CEO, Google
"The best way to understand the challenges and consequences of AGI is to see inside the minds of industry experts shaping the field. Architects of Intelligence gives you that power."
-Sam Altman, President of Y Combinator and co-chairman of OpenAI
"Architects of Intelligence gets you inside the minds of the people building the technology that is going to transform our world. This is a book that everyone should read."
-Reid Hoffman, Co-founder of LinkedIn
Beginning HTML, XHTML, CSS, and JavaScript
Jon Duckett - 2009
While learning these technologies, you will discover coding practices such as writing code that works on multiple browsers including mobile devices, how to use AJAX frameworks to add interactivity to your pages, and how to ensure your pages meet accessible requirements.Packed with real-world examples, the book not only teaches you how to write Web sites using XHTML, CSS and JavaScript, but it also teaches you design principles that help you create attractive web sites and practical advice on how to make web pages more usable. In addition, special checklists and appendices review key topics and provide helpful references that re-enforce the basics you've learned.Serves as an ideal beginners guide to writing web pages using XHTML Explains how to use CSS to make pages more appealing and add interactivity to pages using JavaScript and AJAX frameworks Share advice on design principles and how to make pages more attractive and offers practical help with usability and accessibility Features checklists and appendices that review key topics This introductory guide is essential reading for getting started with using XHTML, CSS and JavaScript to create exciting and compelling Web sites.Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
An Introduction to Statistical Learning: With Applications in R
Gareth James - 2013
This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.
R Cookbook: Proven Recipes for Data Analysis, Statistics, and Graphics
Paul Teetor - 2011
The R language provides everything you need to do statistical work, but its structure can be difficult to master. This collection of concise, task-oriented recipes makes you productive with R immediately, with solutions ranging from basic tasks to input and output, general statistics, graphics, and linear regression.Each recipe addresses a specific problem, with a discussion that explains the solution and offers insight into how it works. If you're a beginner, R Cookbook will help get you started. If you're an experienced data programmer, it will jog your memory and expand your horizons. You'll get the job done faster and learn more about R in the process.Create vectors, handle variables, and perform other basic functionsInput and output dataTackle data structures such as matrices, lists, factors, and data framesWork with probability, probability distributions, and random variablesCalculate statistics and confidence intervals, and perform statistical testsCreate a variety of graphic displaysBuild statistical models with linear regressions and analysis of variance (ANOVA)Explore advanced statistical techniques, such as finding clusters in your dataWonderfully readable, R Cookbook serves not only as a solutions manual of sorts, but as a truly enjoyable way to explore the R language--one practical example at a time.--Jeffrey Ryan, software consultant and R package author
IPv6 Essentials
Silvia Hagen - 2002
It guides you through everything you need to know to get started, including how to configure IPv6 on hosts and routers and which applications currently support IPv6. The new IPv6 protocols offers extended address space, scalability, improved support for security, real-time traffic support, and auto-configuration so that even a novice user can connect a machine to the Internet. Aimed at system and network administrators, engineers, network designers, and IT managers, this book will help you understand, plan for, design, and integrate IPv6 into your current IPv4 infrastructure.Beginning with a short history of IPv6, author Silvia Hagen provides an overview of new functionality and discusses why we need IPv6. Hagen also shares exhaustive discussions of the new IPv6 header format and Extension Headers, IPv6 address and ICMPv6 message format, Security, QoS, Mobility and, last but not least, offers a Quick Start Guide for different operating systems. IPv6 Essentials, Second Edition also covers:In-depth technical guide to IPv6 Mechanisms and Case Studies that show how to integrate IPv6 into your network without interruption of IPv4 services Routing protocols and upper layer protocols Security in IPv6: concepts and requirements. Includes the IPSEC framework and security elements available for authentication and encryption Quality of Service: covers the elements available for QoS in IPv6 and how they can be implemented Detailed discussion of DHCPv6 and Mobile IPv6 Discussion of migration cost and business case Getting started on different operating systems: Sun Solaris, Linux, BSD, Windows XP, and Cisco routersWhether you're ready to start implementing IPv6 today or are planning your strategy for the future, IPv6 Essentials, Second Edition will provide the solid foundation you need to get started."Silvia's look at IPv6 is always refreshing as she translates complex technology features into business drivers and genuine end-user benefits to enable building new business concepts based on end to end models." Latif Ladid, President IPv6 Forum, Chair EU IPv6 Task Force
From the Sea to the Stars
Andre Norton - 2007
This is the first time both novels have appeared together.Sea Siege: The nuclear war had come at last and the research team on an island in the West Indies thought they had been lucky to survive. But survival was going to require more than luck, when they found themselves under attack by sea creatures out of darkest legend, directed by a malevolent intelligence from the depths of the sea.Star Gate: Long ago, the Star Lords had come from a dying Earth to Gorth, where they helped the inhabitants build a civilization. Now some of the Lords have resumed wandering among the stars, but others have decided to travel through an interdimensional gate to another Gorth in a parallel universe. And when they find that in this universe the Star Lords from Earth conquered and enslaved the people of Gorth, their course is clear. They must battle their counterparts to free Gorth--even if it means their own destruction.At the publisher's request, this title is sold without DRM (DRM Rights Management).
Ctrl+Shift+Enter Mastering Excel Array Formulas: Do the Impossible with Excel Formulas Thanks to Array Formula Magic
Mike Girvin - 2013
Beginning with an introduction to array formulas, this manual examines topics such as how they differ from ordinary formulas, the benefits and drawbacks of their use, functions that can and cannot handle array calculations, and array constants and functions. Among the practical applications surveyed include how to extract data from tables and unique lists, how to get results that match any criteria, and how to utilize various methods for unique counts. This book contains 529 screen shots.
Introduction to Probability Models
Sheldon M. Ross - 1972
This updated edition of Ross's classic bestseller provides an introduction to elementary probability theory and stochastic processes, and shows how probability theory can be applied to the study of phenomena in fields such as engineering, computer science, management science, the physical and social sciences, and operations research. With the addition of several new sections relating to actuaries, this text is highly recommended by the Society of Actuaries.This book now contains a new section on compound random variables that can be used to establish a recursive formula for computing probability mass functions for a variety of common compounding distributions; a new section on hiddden Markov chains, including the forward and backward approaches for computing the joint probability mass function of the signals, as well as the Viterbi algorithm for determining the most likely sequence of states; and a simplified approach for analyzing nonhomogeneous Poisson processes. There are also additional results on queues relating to the conditional distribution of the number found by an M/M/1 arrival who spends a time t in the system; inspection paradox for M/M/1 queues; and M/G/1 queue with server breakdown. Furthermore, the book includes new examples and exercises, along with compulsory material for new Exam 3 of the Society of Actuaries.This book is essential reading for professionals and students in actuarial science, engineering, operations research, and other fields in applied probability.