Amrapali
Adurthi Subba Rao
Amrapali craved peace; Upagupta’s bearing exuded contentment. Amrapali depended on the adulation of her audience; Upagupta spurned the attentions of the rich and famous. Their stories were different, but the Buddha’s wise teachings linked their lives – and the lessons to be learned from them.
Final Exams: True Crime Cases from Cyril Wecht
Cyril H. Wecht - 2013
Wecht, M.D., J.D., one of America’s most respected forensic pathologists. Coauthored by crime writer Dawna Kaufmann, Final Exams explores both the technical and the human side of murder. From the heartbreaking case of abducted child, Jessica Lunsford, held captive within shouting distance of her loved ones, to the peculiar story of a murder for hire with a most unlikely victim, Final Exams takes the reader behind the scenes. Secrets about the private lives of both predators and victims are revealed as the authors detail the events that turned rage to tragedy. Fans of CSI will appreciate how Wecht and Kaufmann share the real life process of solving crimes with clues left with the victim.
Tools and Weapons: The Promise and the Peril of the Digital Age
Brad Smith - 2019
This might seem uncontroversial, but it flies in the face of a tech sector long obsessed with rapid growth and sometimes on disruption as an end in itself. Now, though, we have reached an inflection point: Silicon Valley has moved fast and it has broken things. A new understanding has emerged that companies that create technology must accept greater responsibility for the future. And governments will need to regulate technology by moving faster and catching up with the pace of innovation that is impacting our communities and changing the world.In Tools and Weapons, Brad Smith takes us into the cockpit of one of the world's largest and most powerful tech companies as it finds itself in the middle of some of the thorniest emerging issues of our time. These are challenges that come with no preexisting playbook, including privacy, cybercrime and cyberwar, social media, the moral conundrums of AI, big tech's relationship to inequality and the challenges for democracy, far and near. While in no way a self-glorifying "Microsoft memoir," the book opens up the curtain remarkably wide onto some of the company's most crucial recent decision points, as it strives to protect the hopes technology offers against the very real threats it also presents. Every tool can be a weapon in the wrong person's hands, and companies are being challenged in entirely new ways to embrace the totality of their responsibilities. We have moved from a world in which Silicon Valley could take no prisoners to one in which tech companies and governments must work together to address the challenges and adapt to the changes technology has unleashed. There are huge ramifications to be thought through, and Brad Smith provides a marvelous and urgently necessary contribution to that effort.
Rebooting AI: Building Artificial Intelligence We Can Trust
Gary F. Marcus - 2019
Professors Gary Marcus and Ernest Davis have spent their careers at the forefront of AI research and have witnessed some of the greatest milestones in the field, but they argue that a computer winning in games like Jeopardy and go does not signal that we are on the doorstep of fully autonomous cars or superintelligent machines. The achievements in the field thus far have occurred in closed systems with fixed sets of rules. These approaches are too narrow to achieve genuine intelligence. The world we live in is wildly complex and open-ended. How can we bridge this gap? What will the consequences be when we do? Marcus and Davis show us what we need to first accomplish before we get there and argue that if we are wise along the way, we won't need to worry about a future of machine overlords. If we heed their advice, humanity can create an AI that we can trust in our homes, our cars, and our doctor's offices. Reboot provides a lucid, clear-eyed assessment of the current science and offers an inspiring vision of what we can achieve and how AI can make our lives better.
Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD
Jeremy Howard - 2020
But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications.Authors Jeremy Howard and Sylvain Gugger show you how to train a model on a wide range of tasks using fastai and PyTorch. You'll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes.Train models in computer vision, natural language processing, tabular data, and collaborative filteringLearn the latest deep learning techniques that matter most in practiceImprove accuracy, speed, and reliability by understanding how deep learning models workDiscover how to turn your models into web applicationsImplement deep learning algorithms from scratchConsider the ethical implications of your work
Machine Learning With Random Forests And Decision Trees: A Mostly Intuitive Guide, But Also Some Python
Scott Hartshorn - 2016
They are typically used to categorize something based on other data that you have. The purpose of this book is to help you understand how Random Forests work, as well as the different options that you have when using them to analyze a problem. Additionally, since Decision Trees are a fundamental part of Random Forests, this book explains how they work. This book is focused on understanding Random Forests at the conceptual level. Knowing how they work, why they work the way that they do, and what options are available to improve results. This book covers how Random Forests work in an intuitive way, and also explains the equations behind many of the functions, but it only has a small amount of actual code (in python). This book is focused on giving examples and providing analogies for the most fundamental aspects of how random forests and decision trees work. The reason is that those are easy to understand and they stick with you. There are also some really interesting aspects of random forests, such as information gain, feature importances, or out of bag error, that simply cannot be well covered without diving into the equations of how they work. For those the focus is providing the information in a straight forward and easy to understand way.
Spare Change
Dustin Stevens - 2017
It was supposed to have been a celebration. A night out among friends. A chance to celebrate the culmination of ten long years. For the last decade, Kyle Clady has served as a Navy SEAL. He has endured sleepless nights, hellish environments, personal injury, strained relations. He has fought enemies foreign and domestic, and multiple continents. At long last, it is over. He is free to return home to San Diego, to the wife that has endured by his side, to the plans they have made for the future. Little does he know that waiting there for him is an eventuality far worse than anything he ever encountered in the military...
The Creativity Code: How AI Is Learning to Write, Paint and Think
Marcus du Sautoy - 2019
They can navigate more data than a doctor or lawyer and act with greater precision. For many years we’ve taken solace in the notion that they can’t create. But now that algorithms can learn and adapt, does the future of creativity belong to machines, too?It is hard to imagine a better guide to the bewildering world of artificial intelligence than Marcus du Sautoy, a celebrated Oxford mathematician whose work on symmetry in the ninth dimension has taken him to the vertiginous edge of mathematical understanding. In The Creativity Code he considers what machine learning means for the future of creativity. The Pollockizer can produce drip paintings in the style of Jackson Pollock, Botnik spins off fanciful (if improbable) scenes inspired by J. K. Rowling, and the music-composing algorithm Emmy managed to fool a panel of Bach experts. But do these programs just mimic, or do they have what it takes to create? Du Sautoy argues that to answer this question, we need to understand how the algorithms that drive them work―and this brings him back to his own subject of mathematics, with its puzzles, constraints, and enticing possibilities.While most recent books on AI focus on the future of work, The Creativity Code moves us to the forefront of creative new technologies and offers a more positive and unexpected vision of our future cohabitation with machines. It challenges us to reconsider what it means to be human―and to crack the creativity code.
Head First Statistics
Dawn Griffiths - 2008
Whether you're a student, a professional, or just curious about statistical analysis, Head First's brain-friendly formula helps you get a firm grasp of statistics so you can understand key points and actually use them. Learn to present data visually with charts and plots; discover the difference between taking the average with mean, median, and mode, and why it's important; learn how to calculate probability and expectation; and much more.Head First Statistics is ideal for high school and college students taking statistics and satisfies the requirements for passing the College Board's Advanced Placement (AP) Statistics Exam. With this book, you'll:Study the full range of topics covered in first-year statistics Tackle tough statistical concepts using Head First's dynamic, visually rich format proven to stimulate learning and help you retain knowledge Explore real-world scenarios, ranging from casino gambling to prescription drug testing, to bring statistical principles to life Discover how to measure spread, calculate odds through probability, and understand the normal, binomial, geometric, and Poisson distributions Conduct sampling, use correlation and regression, do hypothesis testing, perform chi square analysis, and moreBefore you know it, you'll not only have mastered statistics, you'll also see how they work in the real world. Head First Statistics will help you pass your statistics course, and give you a firm understanding of the subject so you can apply the knowledge throughout your life.
Robot: Mere Machine to Transcendent Mind
Hans Moravec - 1998
But even though Moravec predicts the end of the domination by human beings, his is not a bleak vision. Far from railing against a future in which machines rule the world, Moravec embraces it, taking the startling view that intelligent robots will actually be our evolutionary heirs. Intelligent machines, which will grow from us, learn our skills, and share our goals and values, can be viewed as children of our minds. And since they are our children, we will want them to outdistance us. In fact, in a bid for immortality, many of our descendants will choose to transform into ex humans, as they upload themselves into advanced computers.This provocative new book, the highly anticipated follow-up to his bestselling volume Mind Children, charts the trajectory of robotics in breathtaking detail. A must read for artificial intelligence, technology, and computer enthusiasts, Moravec's freewheeling but informed speculations present a future far different than we ever dared imagine.
Real-Time Big Data Analytics: Emerging Architecture
Mike Barlow - 2013
The data world was revolutionized a few years ago when Hadoop and other tools made it possible to getthe results from queries in minutes. But the revolution continues. Analysts now demand sub-second, near real-time query results. Fortunately, we have the tools to deliver them. This report examines tools and technologies that are driving real-time big data analytics.
Robot Building for Beginners
David Cook - 2002
Not only does author David Cook assist you in understanding the component parts of robot development, but he also presents valuable techniques that prepare you to make new discoveries on your own.Cook begins with the anatomy of a homemade robot and gives you the best advice on how to proceed successfully. General sources for tools and parts are provided in a consolidated list, and specific parts are recommended throughout the book. Also, basic safety precautions and essential measuring and numbering systems are promoted throughout.Specific tools and parts covered include digital multimeters, motors, wheels, resistors, LEDs, photoresistors, transistors, chips, gears, nut drivers, batteries, and more. "Robot Building for Beginners" is an inspiring book that provides an essential base of practical knowledge for anyone getting started in amateur robotics.
Machines of Loving Grace: The Quest for Common Ground Between Humans and Robots
John Markoff - 2015
Pulitzer prize-winning New York Times science writer John Markoff argues that we must decide to design ourselves into our future, or risk being excluded from it altogether.In the past decade, Google introduced us to driverless cars; Apple debuted Siri, a personal assistant that we keep in our pockets; and an Internet of Things connected the smaller tasks of everyday life to the farthest reaches of the Web. Robots have become an integral part of society on the battlefield and the road; in business, education, and health care. Cheap sensors and powerful computers will ensure that in the coming years, these robots will act on their own. This new era offers the promise of immensely powerful machines, but it also reframes a question first raised more than half a century ago, when the intelligent machine was born. Will we control these systems, or will they control us?In Machines of Loving Grace, John Markoff offers a sweeping history of the complicated and evolving relationship between humans and computers. In recent years, the pace of technological change has accelerated dramatically, posing an ethical quandary. If humans delegate decisions to machines, who will be responsible for the consequences? As Markoff chronicles the history of automation, from the birth of the artificial intelligence and intelligence augmentation communities in the 1950s and 1960s, to the modern-day brain trusts at Google and Apple in Silicon Valley, and on to the expanding robotics economy around Boston, he traces the different ways developers have addressed this fundamental problem and urges them to carefully consider the consequences of their work. We are on the brink of the next stage of the computer revolution, Markoff argues, and robots will profoundly transform modern life. Yet it remains for us to determine whether this new world will be a utopia. Moreover, it is now incumbent upon the designers of these robots to draw a bright line between what is human and what is machine.After nearly forty years covering the tech industry, Markoff offers an unmatched perspective on the most drastic technology-driven societal shifts since the introduction of the Internet. Machines of Loving Grace draws on an extensive array of research and interviews to present an eye-opening history of one of the most pressing questions of our time, and urges us to remember that we still have the opportunity to design ourselves into the future—before it's too late.
The Deep Learning Revolution
Terrence J. Sejnowski - 2018
Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy.Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.