An Introduction to Statistical Learning: With Applications in R


Gareth James - 2013
    This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Practical Statistics for Data Scientists: 50 Essential Concepts


Peter Bruce - 2017
    Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data

Embedded Android: Porting, Extending, and Customizing


Karim Yaghmour - 2011
    You'll also receive updates when significant changes are made, as well as the final ebook version. Embedded Android is for Developers wanting to create embedded systems based on Android and for those wanting to port Android to new hardware, or creating a custom development environment. Hackers and moders will also find this an indispensible guide to how Android works.

The C# Player's Guide


R.B. Whitaker - 2012
    

Bayesian Data Analysis


Andrew Gelman - 1995
    Its world-class authors provide guidance on all aspects of Bayesian data analysis and include examples of real statistical analyses, based on their own research, that demonstrate how to solve complicated problems. Changes in the new edition include:Stronger focus on MCMC Revision of the computational advice in Part III New chapters on nonlinear models and decision analysis Several additional applied examples from the authors' recent research Additional chapters on current models for Bayesian data analysis such as nonlinear models, generalized linear mixed models, and more Reorganization of chapters 6 and 7 on model checking and data collectionBayesian computation is currently at a stage where there are many reasonable ways to compute any given posterior distribution. However, the best approach is not always clear ahead of time. Reflecting this, the new edition offers a more pluralistic presentation, giving advice on performing computations from many perspectives while making clear the importance of being aware that there are different ways to implement any given iterative simulation computation. The new approach, additional examples, and updated information make Bayesian Data Analysis an excellent introductory text and a reference that working scientists will use throughout their professional life.

All of Statistics: A Concise Course in Statistical Inference


Larry Wasserman - 2003
    But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like nonparametric curve estimation, bootstrapping, and clas- sification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analyzing data. For some time, statistics research was con- ducted in statistics departments while data mining and machine learning re- search was conducted in computer science departments. Statisticians thought that computer scientists were reinventing the wheel. Computer scientists thought that statistical theory didn't apply to their problems. Things are changing. Statisticians now recognize that computer scientists are making novel contributions while computer scientists now recognize the generality of statistical theory and methodology. Clever data mining algo- rithms are more scalable than statisticians ever thought possible. Formal sta- tistical theory is more pervasive than computer scientists had realized.

Student Solutions Manual for Devore's Probability and Statistics for Engineering and Science, 8th


Jay L. Devore - 1995
    This manual contains fully worked-out solutions to all of the odd-numbered exercises in the text, giving students a way to check their answers and ensure that they took the correct steps to arrive at an answer.

Database System Concepts


Abraham Silberschatz - 1987
    It aims to present these concepts and algorithms in a general setting that is not tied to one particular database system.

HTML Black Book: The Programmer's Complete HTML Reference Book


Steven Holzner - 2000
    An immediate and comprehensive answer source, rather than a diffuse tutorial, for serious programmers who want to see difficult material covered in depth without the fluff. Discusses XML, dynamic HTML, JavaScript, Java, and Perl CGI programming to create a full Web site programming package. Written by the author of several successful titles published by The Coriolis Group.

Ray Tracing in One Weekend (Ray Tracing Minibooks Book 1)


Peter Shirley - 2016
    Each mini-chapter adds one feature to the ray tracer, and by the end the reader can produce the image on the book cover. Details of basic ray tracing code architecture and C++ classes are given.

A Microsoft Life


Stephen Toulouse - 2010
    Enjoy a journey through the eyes of a geek working at one of the most important companies in the world as he walks you through events both large and small. Just don't get caught in the Redmond reality distortion field! What others are saying about "A Microsoft Life": "Any self-respecting geek needs to read this book. Stepto provides an enjoyable and entertaining insight of life inside Microsoft." - Larry "Major Nelson" Hryb, Director of Programming for Xbox LIVE "Anyone who lived through the adolescent years of the computer revolution will alternate between laughing and crying (from laughing) at these great stories from inside the monolith. - Ken Denmead, NYT Bestselling Author, and editor of Geekdad.com

Ctrl+Shift+Enter Mastering Excel Array Formulas: Do the Impossible with Excel Formulas Thanks to Array Formula Magic


Mike Girvin - 2013
    Beginning with an introduction to array formulas, this manual examines topics such as how they differ from ordinary formulas, the benefits and drawbacks of their use, functions that can and cannot handle array calculations, and array constants and functions. Among the practical applications surveyed include how to extract data from tables and unique lists, how to get results that match any criteria, and how to utilize various methods for unique counts. This book contains 529 screen shots.

Introduction to Computer Theory


Daniel I.A. Cohen - 1986
    Covers all the topics needed by computer scientists with a sometimes humorous approach that reviewers found refreshing. The goal of the book is to provide a firm understanding of the principles and the big picture of where computer theory fits into the field.

Doing Bayesian Data Analysis: A Tutorial Introduction with R and BUGS


John K. Kruschke - 2010
    Included are step-by-step instructions on how to carry out Bayesian data analyses.Download Link : readbux.com/download?i=0124058884            0124058884 Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan PDF by John Kruschke

MONEY WISE: Timeless Lessons on Building Wealth


Deepak Shenoy - 2021
    Money Wise shows you the way. It cuts through the clutter of jargon and technical terms, leading you step by step on how to grow wealthy. In it, you will learn: Ways of allocating your income The only mutual funds hack worth knowing Why you should be watching not what Warren Buffett says but what he does Written in Shenoy’s trademark style, Money Wise is a book as much fun to read as it is informative. If you want to start investing, this is the book for you. If you have already started, then read this and up your game.