Book picks similar to
Introduction to Data Mining by Vipin Kumar


data-science
non-fiction
textbooks
machine-learning

Fundamentals of Database Systems


Ramez Elmasri - 1989
    It features excellent examples and access to Addison Wesley's database Web site that includes further teaching, tutorials and many useful student resources.

Hacking: The Art of Exploitation


Jon Erickson - 2003
    This book explains the technical aspects of hacking, including stack based overflows, heap based overflows, string exploits, return-into-libc, shellcode, and cryptographic attacks on 802.11b.

Beautiful Evidence


Edward R. Tufte - 2006
    Beautiful Evidence is about how seeing turns into showing, how data and evidence turn into explanation. The book identifies excellent and effective methods for showing nearly every kind of information, suggests many new designs (including sparklines), and provides analytical tools for assessing the credibility of evidence presentations (which are seen from both sides: how to produce and how to consume presentations). For alert consumers of presentations, there are chapters on diagnosing evidence corruption and PowerPoint pitches. Beautiful Evidence concludes with two chapters that leave the world of pixel and paper flatland representations - and move onto seeing and thinking in space land, the real-land of three-space and time.

Big Data: A Revolution That Will Transform How We Live, Work, and Think


Viktor Mayer-Schönberger - 2013
    “Big data” refers to our burgeoning ability to crunch vast collections of information, analyze it instantly, and draw sometimes profoundly surprising conclusions from it. This emerging science can translate myriad phenomena—from the price of airline tickets to the text of millions of books—into searchable form, and uses our increasing computing power to unearth epiphanies that we never could have seen before. A revolution on par with the Internet or perhaps even the printing press, big data will change the way we think about business, health, politics, education, and innovation in the years to come. It also poses fresh threats, from the inevitable end of privacy as we know it to the prospect of being penalized for things we haven’t even done yet, based on big data’s ability to predict our future behavior.In this brilliantly clear, often surprising work, two leading experts explain what big data is, how it will change our lives, and what we can do to protect ourselves from its hazards. Big Data is the first big book about the next big thing.www.big-data-book.com

Digital Image Processing


Rafael C. Gonzalez - 1977
    Completely self-contained, heavily illustrated, and mathematically accessible, it has a scope of application that is not limited to the solution of specialized problems. Digital Image Fundamentals. Image Enhancement in the Spatial Domain. Image Enhancement in the Frequency Domain. Image Restoration. Color Image Processing. Wavelets and Multiresolution Processing. Image Compression. Morphological Image Processing. Image Segmentation. Representation and Description. Object Recognition.

Computer Age Statistical Inference: Algorithms, Evidence, and Data Science


Bradley Efron - 2016
    'Big data', 'data science', and 'machine learning' have become familiar terms in the news, as statistical methods are brought to bear upon the enormous data sets of modern science and commerce. How did we get here? And where are we going? This book takes us on an exhilarating journey through the revolution in data analysis following the introduction of electronic computation in the 1950s. Beginning with classical inferential theories - Bayesian, frequentist, Fisherian - individual chapters take up a series of influential topics: survival analysis, logistic regression, empirical Bayes, the jackknife and bootstrap, random forests, neural networks, Markov chain Monte Carlo, inference after model selection, and dozens more. The distinctly modern approach integrates methodology and algorithms with statistical inference. The book ends with speculation on the future direction of statistics and data science.

UNIX and Linux System Administration Handbook


Evi Nemeth - 2010
    This is one of those cases. The UNIX System Administration Handbook is one of the few books we ever measured ourselves against." -From the Foreword by Tim O'Reilly, founder of O'Reilly Media "This book is fun and functional as a desktop reference. If you use UNIX and Linux systems, you need this book in your short-reach library. It covers a bit of the systems' history but doesn't bloviate. It's just straightfoward information delivered in colorful and memorable fashion." -Jason A. Nunnelley"This is a comprehensive guide to the care and feeding of UNIX and Linux systems. The authors present the facts along with seasoned advice and real-world examples. Their perspective on the variations among systems is valuable for anyone who runs a heterogeneous computing facility." -Pat Parseghian The twentieth anniversary edition of the world's best-selling UNIX system administration book has been made even better by adding coverage of the leading Linux distributions: Ubuntu, openSUSE, and RHEL. This book approaches system administration in a practical way and is an invaluable reference for both new administrators and experienced professionals. It details best practices for every facet of system administration, including storage management, network design and administration, email, web hosting, scripting, software configuration management, performance analysis, Windows interoperability, virtualization, DNS, security, management of IT service organizations, and much more. UNIX(R) and Linux(R) System Administration Handbook, Fourth Edition, reflects the current versions of these operating systems: Ubuntu(R) LinuxopenSUSE(R) LinuxRed Hat(R) Enterprise Linux(R)Oracle America(R) Solaris(TM) (formerly Sun Solaris)HP HP-UX(R)IBM AIX(R)

Neural Networks and Deep Learning


Michael Nielsen - 2013
    The book will teach you about:* Neural networks, a beautiful biologically-inspired programming paradigm which enables a computer to learn from observational data* Deep learning, a powerful set of techniques for learning in neural networksNeural networks and deep learning currently provide the best solutions to many problems in image recognition, speech recognition, and natural language processing. This book will teach you the core concepts behind neural networks and deep learning.

How to Prove It: A Structured Approach


Daniel J. Velleman - 1994
    The book begins with the basic concepts of logic and set theory, to familiarize students with the language of mathematics and how it is interpreted. These concepts are used as the basis for a step-by-step breakdown of the most important techniques used in constructing proofs. To help students construct their own proofs, this new edition contains over 200 new exercises, selected solutions, and an introduction to Proof Designer software. No background beyond standard high school mathematics is assumed. Previous Edition Hb (1994) 0-521-44116-1 Previous Edition Pb (1994) 0-521-44663-5

The Art of Data Science: A Guide for Anyone Who Works with Data


Roger D. Peng - 2015
    The authors have extensive experience both managing data analysts and conducting their own data analyses, and have carefully observed what produces coherent results and what fails to produce useful insights into data. This book is a distillation of their experience in a format that is applicable to both practitioners and managers in data science.

Networking for Systems Administrators (IT Mastery Book 5)


Michael W. Lucas - 2015
    Servers give sysadmins a incredible visibility into the network—once they know how to unlock it. Most sysadmins don’t need to understand window scaling, or the differences between IPv4 and IPv6 echo requests, or other intricacies of the TCP/IP protocols. You need only enough to deploy your own applications and get easy support from the network team.This book teaches you:•How modern networks really work•The essentials of TCP/IP•The next-generation protocol, IPv6•The right tools to diagnose network problems, and how to use them•Troubleshooting everything from the physical wire to DNS•How to see the traffic you send and receive•Connectivity testing•How to communicate with your network team to quickly resolve problemsA systems administrator doesn’t need to know the innards of TCP/IP, but knowing enough to diagnose your own network issues transforms a good sysadmin into a great one.

Effective C++: 55 Specific Ways to Improve Your Programs and Designs


Scott Meyers - 1991
    But the state-of-the-art has moved forward dramatically since Meyers last updated this book in 1997. (For instance, there s now STL. Design patterns. Even new functionality being added through TR1 and Boost.) So Meyers has done a top-to-bottom rewrite, identifying the 55 most valuable techniques you need now to be exceptionally effective with C++. Over half of this edition s content is new. Templates broadly impact C++ development, and you ll find them everywhere. There s extensive coverage of multithreaded systems. There s an entirely new chapter on resource management. You ll find substantial new coverage of exceptions. Much is gained, but nothing s lost: You ll find the same depth of practical insight that first made Effective C++ a classic all those years ago. Bill Camarda, from the July 2005 href="http://www.barnesandnoble.com/newslet... Only

Information Theory, Inference and Learning Algorithms


David J.C. MacKay - 2002
    These topics lie at the heart of many exciting areas of contemporary science and engineering - communication, signal processing, data mining, machine learning, pattern recognition, computational neuroscience, bioinformatics, and cryptography. This textbook introduces theory in tandem with applications. Information theory is taught alongside practical communication systems, such as arithmetic coding for data compression and sparse-graph codes for error-correction. A toolbox of inference techniques, including message-passing algorithms, Monte Carlo methods, and variational approximations, are developed alongside applications of these tools to clustering, convolutional codes, independent component analysis, and neural networks. The final part of the book describes the state of the art in error-correcting codes, including low-density parity-check codes, turbo codes, and digital fountain codes -- the twenty-first century standards for satellite communications, disk drives, and data broadcast. Richly illustrated, filled with worked examples and over 400 exercises, some with detailed solutions, David MacKay's groundbreaking book is ideal for self-learning and for undergraduate or graduate courses. Interludes on crosswords, evolution, and sex provide entertainment along the way. In sum, this is a textbook on information, communication, and coding for a new generation of students, and an unparalleled entry point into these subjects for professionals in areas as diverse as computational biology, financial engineering, and machine learning.

The Basics of Digital Forensics: The Primer for Getting Started in Digital Forensics


John Sammons - 2011
    This book teaches you how to conduct examinations by explaining what digital forensics is, the methodologies used, key technical concepts and the tools needed to perform examinations. Details on digital forensics for computers, networks, cell phones, GPS, the cloud, and Internet are discussed. Readers will also learn how to collect evidence, document the scene, and recover deleted data. This is the only resource your students need to get a jump-start into digital forensics investigations.This book is organized into 11 chapters. After an introduction to the basics of digital forensics, the book proceeds with a discussion of key technical concepts. Succeeding chapters cover labs and tools; collecting evidence; Windows system artifacts; anti-forensics; Internet and email; network forensics; and mobile device forensics. The book concludes by outlining challenges and concerns associated with digital forensics. PowerPoint lecture slides are also available.This book will be a valuable resource for entry-level digital forensics professionals as well as those in complimentary fields including law enforcement, legal, and general information security.

Big Java


Cay S. Horstmann - 2002
    Thoroughly updated to include Java 6, the Third Edition of Horstmann's bestselling text helps you absorb computing concepts and programming principles, develop strong problem-solving skills, and become a better programmer, all while exploring the elements of Java that are needed to write real-life programs. A top-notch introductory text for beginners, Big Java, Third Edition is also a thorough reference for students and professionals alike to Java technologies, Internet programming, database access, and many other areas of computer science.Features of the Third Edition: The 'Objects Gradual' approach leads you into object-oriented thinking step-by-step, from using classes, implementing simple methods, all the way to designing your own object-oriented programs. A strong emphasis on test-driven development encourages you to consider outcomes as you write programming code so you design better, more usable programs Helpful "Testing Track" introduces techniques and tools step by step, ensuring that you master one before moving on to the next New teaching and learning tools in WileyPLUS--including a unique assignment checker that enables you to test your programming problems online before you submit them for a grade Graphics topics are developed gradually throughout the text, conveniently highlighted in separate color-coded sections Updated coverage is fully compatible with Java 5 and includes a discussion of the latest Java 6 features