Biggest Secrets


William Poundstone - 1993
    Fields Cookies... What backward messages on records are really trying to tell you... Frank Sinatra's real age... Why you can't counterfeit a lottery ticket... Barbra Streisand's blue movie... The other Boy Scout rituals... Ingmar Bergman's soap commercials... The formula for Play-Doh... and more.

Cambridge International AS Level and A Level Physics Coursebook with CD-ROM (Cambridge International Examinations)


David Sang - 2010
    Cambridge International AS and A Level Physics covers all the material required for the Cambridge syllabus. The accompanying Student's CD-ROM includes many more questions linked to each chapter, including multiple choice, how to tackle the examinations, and animations, a glossary and summaries. A Teacher's Resource CD-ROM is also available and includes answers to all questions in the Coursebook, together with worksheets describing practical work linked to each chapter in the book.

The New Quantum Universe


Tony Hey - 2003
    Quantum paradoxes and the eventful life of Schroedinger's Cat are explained, along with the Many Universe explanation of quantum measurement in this newly revised edition. Updated throughout, the book also looks ahead to the nanotechnology revolution and describes quantum cryptography, computing and teleportation. Including an account of quantum mechanics and science fiction, this accessible book is geared to the general reader. Anthony Hey teaches at the University of Southampton, UK, and is the co-author of several books, including two with Patrick Walters, The Quantum Universe (Cambridge, 1987), and Einstein's Mirror (Cambridge, 1997). Patrick Walters is a Lecturer in Continuing Education at the University of Wales at Swansea. He co-ordinates the Physical Science Programme in DACE which includes the Astronomy Programme. His research interests include science education, and he also writes non-technical books on science for the general reader and beginning undergraduates. First Edition Pb (1987): 0-521-31845-9

Albert Einstein: And the Frontiers of Physics


Jeremy Bernstein - 1995
    They found him a dreamy child without an especially promising future. But some time in his early years he developed what he called wonder about the world. Later in life, he remembered two instances from his childhood--his fascination at age five with a compass and his introduction to the lucidity and certainty of geometry--that may have been the first signs of what was to come. From these ordinary beginnings, Einstein became one of the greatest scientific thinkers of all time. This illuminating biography describes in understandable language the experiments and revolutionary theories that flowed from Einstein's imagination and intellect--from his theory of relativity, which changed our conception of the universe and our place in it, to his search for a unified field theory that would explain all of the forces in the universe.

Archimedes to Hawking: Laws of Science and the Great Minds Behind Them


Clifford A. Pickover - 2008
    Throughout this fascinating book, Clifford Pickover invites us to share in the amazing adventures of brilliant, quirky, and passionate people after whom these laws are named. These lawgivers turn out to be a fascinating, diverse, and sometimes eccentric group of people. Many were extremely versatile polymaths--human dynamos with a seemingly infinite supply of curiosity and energy and who worked in many different areas in science. Others had non-conventional educations and displayed their unusual talents from an early age. Some experienced resistance to their ideas, causing significant personal anguish. Pickover examines more than 40 great laws, providing brief and cogent introductions to the science behind the laws as well as engaging biographies of such scientists as Newton, Faraday, Ohm, Curie, and Planck. Throughout, he includes fascinating, little-known tidbits relating to the law or lawgiver, and he provides cross-references to other laws or equations mentioned in the book. For several entries, he includes simple numerical examples and solved problems so that readers can have a hands-on understanding of the application of the law. A sweeping survey of scientific discovery as well as an intriguing portrait gallery of some of the greatest minds in history, this superb volume will engage everyone interested in science and the physical world or in the dazzling creativity of these brilliant thinkers.

Spacetime Physics


Edwin F. Taylor - 1966
    Written by two of the field's true pioneers, Spacetime Physics can extend and enhance coverage of specialty relativity in the classroom. This thoroughly up-to-date, highly accessible overview covers microgravity, collider accelerators, satellite probes, neutron detectors, radioastronomy, and pulsars.  The chapter on general relativity with new material on gravity waves, black holes, and cosmology.

Do You QuantumThink?: New Thinking That Will Rock Your World


Dianne Collins - 2011
    We're all looking for new ways of thinking that can bring about real solutions to modern problems, from the pursuit of inner serenity to solving world conflicts. In Do You QuantumThink? author Dianne Collins shares her ingenious discovery that reveals a critical missing link to make sense of our changing times. Her discovery provides us with the understanding and methodology to rise above problems of today by laying the foundation for an entirely new way to think.Part science, part philosophy, part spirituality, Do You QuantumThink? draws on a wide spectrum of sources, from cutting edge innovations in the sciences to the insights of the world's greatest spiritual leaders. This book will make you laugh, free you from limiting ideas, and introduce you to the most advanced principles and practical methods for living. Do You QuantumThink? will rock your world in the best of ways as you experience one revelation after another.

Advanced Electronic Communications Systems


Wayne Tomasi - 1987
    Numerous examples throughout provide readers with real-life applications of the concepts of analog and digital communications systems, while chapter-end questions and problems give them a chance to test and review their understanding of fundamental and key topics. Modern digital and data communications systems, microwave radio communications systems, satellite communications systems, and optical fiber communications systems. Cellular and PCS telephone systems coverage presents the latest and most innovative technological advancements being made in cellular communication systems. Optical fiber communications chapter includes new sections on light sources, optical power, optical sources and link budget. Current topics include trellis encoding, CCITT modem recommendations, PCM line speed, extended superframe format, wavelength division multiplexing, Kepler's laws, Clark orbits, limits of visibility, Satellite Radio Navigation and Navstar GPS. For the study of electronic communications systems.

Einstein's Miraculous Year


John J. Stachel - 1998
    In those twelve months, Einstein shattered many cherished scientific beliefs with five extraordinary papers that would establish him as the world's leading physicist. This book brings those papers together in an accessible format. The best-known papers are the two that founded special relativity: On the Electrodynamics of Moving Bodies and Does the Inertia of a Body Depend on Its Energy Content? In the former, Einstein showed that absolute time had to be replaced by a new absolute: the speed of light. In the second, he asserted the equivalence of mass and energy, which would lead to the famous formula E = mc2.The book also includes On a Heuristic Point of View Concerning the Production and Transformation of Light, in which Einstein challenged the wave theory of light, suggesting that light could also be regarded as a collection of particles. This helped to open the door to a whole new world--that of quantum physics. For ideas in this paper, he won the Nobel Prize in 1921.The fourth paper also led to a Nobel Prize, although for another scientist, Jean Perrin. On the Movement of Small Particles Suspended in Stationary Liquids Required by the Molecular-Kinetic Theory of Heat concerns the Brownian motion of such particles. With profound insight, Einstein blended ideas from kinetic theory and classical hydrodynamics to derive an equation for the mean free path of such particles as a function of the time, which Perrin confirmed experimentally. The fifth paper, A New Determination of Molecular Dimensions, was Einstein's doctoral dissertation, and remains among his most cited articles. It shows how to calculate Avogadro's number and the size of molecules.These papers, presented in a modern English translation, are essential reading for any physicist, mathematician, or astrophysicist. Far more than just a collection of scientific articles, this book presents work that is among the high points of human achievement and marks a watershed in the history of science. Coinciding with the 100th anniversary of the miraculous year, this new paperback edition includes an introduction by John Stachel, which focuses on the personal aspects of Einstein's youth that facilitated and led up to the miraculous year.

Simply Einstein: Relativity Demystified


Richard Wolfson - 2002
    Drawing from years of teaching modern physics to nonscientists, Wolfson explains in a lively, conversational style the simple principles underlying Einstein's theory.Relativity, Wolfson shows, gave us a new view of space and time, opening the door to questions about their flexible nature: Is the universe finite or infinite? Will it expand forever or eventually collapse in a "big crunch"? Is time travel possible? What goes on inside a black hole? How does gravity really work? These questions at the forefront of twenty-first-century physics are all rooted in the profound and sweeping vision of Albert Einstein's early twentieth-century theory. Wolfson leads his readers on an intellectual journey that culminates in a universe made almost unimaginably rich by the principles that Einstein first discovered.

How to Build a Brain and 34 Other Really Interesting Uses of Maths


Richard Elwes - 2010
    You'll find out how to unknot your DNA, how to count like a supercomputer and how to become famous for solving mathematics' most challenging problem.

Infinite Potential: What Quantum Physics Reveals About How We Should Live


Lothar Schäfer - 2013
    With his own research as well as that of some of the most distinguished scientists of our time, Schäfer moves us from a reality of Darwinian competition to cooperation, a meaningless universe to a meaningful one, and a disconnected, isolated existence to an interconnected one. In so doing, he shows us that our potential is infinite and calls us to live in accordance with the order of the universe, creating a society based on the cosmic principle of connection, emphasizing cooperation and community.

The Physics of Climate Change


Lawrence M. Krauss - 2021
    Here you’ll find the facts, the processes, the physics of our complex and changing climate, but delivered with eloquence and urgency. Lawrence Krauss writes with a clarity that transcends mere politics. Prose and poetry were never better bedfellows.” —Ian McEwan, Booker Prize-winning author of Solar and Machines Like Me “Lawrence Krauss has written the ideal book for anyone interested in understanding the science of global warming. It is at once elegant, rigorous, and timely.”—Elizabeth Kolbert, staff writer, The New Yorker, and Pulitzer prize-winning author of The Sixth Extinction “A brief, brilliant, and charming summary of what physicists know about climate change and how they learned it.” —Sheldon Glashow, Nobel Laureate in Physics, Metcalf Distinguished Professor Emeritus, Boston University “The distinguished scientist Lawrence Krauss turns his penetrating gaze on the most pressing existential threat facing our world: climate change. It is brimming with information lucidly analysed. Such hope as there is lies in science, and a physicist of Dr. Krauss’s imaginative versatility is unusually qualified to offer it.” —Richard Dawkins, author of The Blind Watchmaker and Science in the Soul “Lucid and gripping, this study of the most severe challenge humans have ever faced leads the reader from the basic physics of climate change to recognition of the damage that humans have already caused and on to the prospects that lie ahead if we do not change course soon.” —Noam Chomsky, Laureate Professor, University of Arizona, author of Internationalism or Extinction? “Lawrence Krauss tells the story of climate change with erudition, urgency, and passion. It is our great good luck that one of our most brilliant scientists is also such a gifted writer. This book will change the way we think about the future.” —Jennifer Finney Boylan, author of Good Boy and She’s Not There “Everything on climate change that I’ve seen is either dumbed down and bossy or written for other climate scientists. I’ve been looking for a book that can let me, a layperson, understand the science. This book does just what I was looking for. It is important.” —Penn Jillette, Magician, author of Presto! and God, No! “The renowned physicist Lawrence Krauss makes the science behind one of the most important issues of our time accessible to all.” —Richard C. J. Somerville, Distinguished Professor Emeritus, Scripps Institution of Oceanography, University of California, San Diego “Lawrence Krauss is a fine physicist, a talented writer, and a scientist deeply engaged with public affairs. His book deserves wide readership. The book’s eloquent exposition of the science and the threats should enlighten all readers and motivate them to an urgent concern about our planet’s future.” —Lord Martin Rees, Astronomer Royal, former president of the Royal Society, author of On the Future: Prospects for Humanity

Who Got Einstein's Office? Eccentricity and Genius at the Institute for Advanced Study


Ed Regis - 1987
    Robert Oppenheimer rode out his political persecution in the Director's mansion. It is the Institute for Advanced Study in Princeton, New Jersey; at one time or another, home to fourteen Nobel laureates, most of the great physicists and mathematicians of the modern era, and two of the most exciting developments in twentieth-century science—cellular automata and superstrings.Who Got Einstein's Office? tells for the first time the story of this secretive institution and of its fascinating personalities.

The Unreasonable Effectiveness of Mathematics in the Natural Sciences


Eugene Paul Wigner - 1959
    In the paper, Wigner observed that the mathematical structure of a physical theory often points the way to further advances in that theory and even to empirical predictions.