Book picks similar to
The Second Quantum Revolution: From Entanglement to Quantum Computing and Other Super-Technologies by Lars Jaeger
science
physics
___new
history-of-science
1001 Things Everyone Should Know About Science
James S. Trefil - 1991
Broad topics are broken down into easily comprehensible statements, and Pop Quiz and Odd Fact sections help reinforce the learning process and keep things interesting. 100 illustrations.
My Brain is Open: The Mathematical Journeys of Paul Erdős
Bruce Schechter - 1998
Hungarian-born Erdős believed that the meaning of life was to prove and conjecture. His work in the United States and all over the world has earned him the titles of the century's leading number theorist and the most prolific mathematician who ever lived. Erdős's important work has proved pivotal to the development of computer science, and his unique personality makes him an unforgettable character in the world of mathematics. Incapable of the smallest of household tasks and having no permanent home or job, he was sustained by the generosity of colleagues and by his own belief in the beauty of numbers. Witty and filled with the sort of mathematical puzzles that intrigued Erdős and continue to fascinate mathematicians today, My Brain Is Open is the story of this strange genius and a journey in his footsteps through the world of mathematics, where universal truths await discovery like hidden treasures and where brilliant proofs are poetry.
Particle Physics For Non Physicists: A Tour Of The Microcosmos
Steven Pollock - 2003
And you'll also learn the "rules of the game" - the forces that drive those particles and the ways in which they interact - that underlie the workings of the universe.The lectures have been designed to be enriching for everyone, regardless of scientific background or mathematical ability. Virtually all you'll need as you enter this fascinating world are your curiosity, common sense, and, as Professor Pollock notes, "an open mind for the occasional quantum weirdness." As you move through the lectures, you'll also gain a knowledge of how those particles fit into perhaps the greatest scientific theory of all time: the Standard Model of particle physics; a grasp of key terms like "gauge symmetry," "quantum chromodynamics," and "unified quantum field Theory;" and an appreciation of how particle physics fits in with other branches of physics - including cosmology and quantum mechanics - to create our overall understanding of nature.
Black Bodies and Quantum Cats: Tales from the Annals of Physics
Jennifer Ouellette - 2005
In Black Bodies and Quantum Cats, science writer Jennifer Ouellette traces key developments in the field, setting descriptions of the fundamentals of physics in their historical context as well as against a broad cultural backdrop. Newton’s laws are illustrated via the film Addams Family Values, while Back to the Future demonstrates the finer points of special relativity. Poe’s "The Purloined Letter" serves to illuminate the mysterious nature of neutrinos, and Jeanette Winterson’s novel Gut Symmetries provides an elegant metaphorical framework for string theory. An enchanting and edifying read, Black Bodies and Quantum Cats shows that physics is not an arcane field of study but a profoundly human endeavor—and a fundamental part of our everyday world.
Your Place in the Universe: Understanding Our Big, Messy Existence
Paul M. Sutter - 2018
Sutter emphasizes how amazing it is that we are part of such a huge, complex, and mysterious place. Through metaphors and uncomplicated language, Sutter breathes life into the science of astrophysics, unveiling how particles, forces, and fields interplay to create the greatest of cosmic dramas. Touched with the author's characteristic breezy, conversational style--which has made him a breakout hit on venues such as The Weather Channel, the Science Channel, and his own popular Ask a Spaceman! podcast--he conveys the fun and wonder of delving deeply into the physical processes of the natural universe. He weaves together the past and future histories of our universe with grounded descriptions of essential modern-day physics as well as speculations based on the latest research in cosmology. Topics include our place in the Milky Way galaxy; the cosmic web--a vast web-like pattern in which galaxies are arranged; the origins of our universe in the big bang; the mysteries of dark matter and dark energy; how science has dramatically changed our relationship to the cosmos; conjectures about the future of reality as we know it; and more.For anyone who has ever stared at the starry night sky and wondered how we humans on Earth fit into the big picture, this book is an essential roadmap.
Heisenberg's War: The Secret History of the German Bomb
Thomas Powers - 2000
. . [a] powerful book." -- New York Times One of the last secrets of World War II is why the Germans failed to build an atomic bomb. Germany was the birthplace of modern physics; it possessed the raw materials and the industrial base; and it commanded key intellectual resources. What happened? In Heisenberg's War, Thomas Powers tells of the interplay between science and espionage, morality and military necessity, and paranoia and cool logic that marked the German bomb program and the Allied response to it. On the basis of dozens of interviews and years of intensive research, Powers concludes that Werner Heisenberg, who was the leading figure in the German atomic effort, consciously obstructed the development of the bomb and in a famous 1941 meeting in Copenhagen with his former mentor Neils Bohr in effect sought to dissuade the Allies from their pursuit of the bomb. Heisenberg's War is a "superbly researched and well-written book" (Time) whose extraordinary story engrosses-and haunts.
The Best American Science Writing 2010
Jerome Groopman - 2010
Distinguished by new and impressive voices as well as some of the foremost names in science writing—David Dobbs, Elizabeth Kolbert, and Larissa MacFarquhar among them—this eleventh edition features outstanding journalism from a wide variety of publications, providing a comprehensive overview of the year’s most compelling, relevant, and exciting developments in the world of science. Provocative and engaging, The Best American Science Writing 2010 reveals just how far science has brought us—and where it is headed next.
The Spiritual Physics of Light: How We See, Feel, and Know Truth
Aaron D. Franklin - 2021
Dark Cosmos: In Search of Our Universe's Missing Mass and Energy
Dan Hooper - 2006
Beginning with the publication of Albert Einstein's theory of relativity, through the wild revolution of quantum mechanics, and up until the physics of the modern day (including the astonishing revelation, in 1998, that the Universe is not only expanding, but doing so at an ever-quickening pace), much of what physicists have seen in our Universe suggests that much of our Universe is unseen—that we live in a dark cosmos.Everyone knows that there are things no one can see—the air you're breathing, for example, or, to be more exotic, a black hole. But what everyone does not know is that what we can see—a book, a cat, or our planet—makes up only 5 percent of the Universe. The rest—fully 95 percent—is totally invisible to us; its presence discernible only by the weak effects it has on visible matter around it.This invisible stuff comes in two varieties—dark matter and dark energy. One holds the Universe together, while the other tears it apart. What these forces really are has been a mystery for as long as anyone has suspected they were there, but the latest discoveries of experimental physics have brought us closer to that knowledge. Particle physicist Dan Hooper takes his readers, with wit, grace, and a keen knack for explaining the toughest ideas science has to offer, on a quest few would have ever expected: to discover what makes up our dark cosmos.
Introduction to Modern Optics
Grant R. Fowles - 1968
The first half of the book deals with classical physical optics; the second principally with the quantum nature of light. Chapters 1 and 2 treat the propagation of light waves, including the concepts of phase and group velocities, and the vectorial nature of light. Chapter 3 applies the concepts of partial coherence and coherence length to the study of interference, and Chapter 4 takes up multiple-beam interference and includes Fabry-Perot interferometry and multilayer-film theory. Diffraction and holography are the subjects of Chapter 5, and the propagation of light in material media (including crystal and nonlinear optics) are central to Chapter 6. Chapters 7 and 8 introduce the quantum theory of light and elementary optical spectra, and Chapter 9 explores the theory of light amplification and lasers. Chapter 10 briefly outlines ray optics in order to introduce students to the matrix method for treating optical systems and to apply the ray matrix to the study of laser resonators.Many applications of the laser to the study of optics are integrated throughout the text. The author assumes students have had an intermediate course in electricity and magnetism and some advanced mathematics beyond calculus. For classroom use, a list of problems is included at the end of each chapter, with selected answers at the end of the book.