Show Me the Numbers: Designing Tables and Graphs to Enlighten


Stephen Few - 2004
    Information is provided on the fundamental concepts of table and graph design, the numbers and knowledge most suitable for display in a graphic form, the best tabular means to communicate certain ideas, and the component-level aspects of design. Analysts, technicians, and managers will appreciate the solid theory behind this outline for ensuring that tables and graphs present quantitative business information in a truthful, attractive format that facilitates better decision making.

Data Science from Scratch: First Principles with Python


Joel Grus - 2015
    In this book, you’ll learn how many of the most fundamental data science tools and algorithms work by implementing them from scratch. If you have an aptitude for mathematics and some programming skills, author Joel Grus will help you get comfortable with the math and statistics at the core of data science, and with hacking skills you need to get started as a data scientist. Today’s messy glut of data holds answers to questions no one’s even thought to ask. This book provides you with the know-how to dig those answers out. Get a crash course in Python Learn the basics of linear algebra, statistics, and probability—and understand how and when they're used in data science Collect, explore, clean, munge, and manipulate data Dive into the fundamentals of machine learning Implement models such as k-nearest Neighbors, Naive Bayes, linear and logistic regression, decision trees, neural networks, and clustering Explore recommender systems, natural language processing, network analysis, MapReduce, and databases

Smart Machines: IBM's Watson and the Era of Cognitive Computing


John E. Kelly III - 2013
    The victory of IBM's Watson on the television quiz show Jeopardy! revealed how scientists and engineers at IBM and elsewhere are pushing the boundaries of science and technology to create machines that sense, learn, reason, and interact with people in new ways to provide insight and advice.In Smart Machines, John E. Kelly III, director of IBM Research, and Steve Hamm, a writer at IBM and a former business and technology journalist, introduce the fascinating world of "cognitive systems" to general audiences and provide a window into the future of computing. Cognitive systems promise to penetrate complexity and assist people and organizations in better decision making. They can help doctors evaluate and treat patients, augment the ways we see, anticipate major weather events, and contribute to smarter urban planning. Kelly and Hamm's comprehensive perspective describes this technology inside and out and explains how it will help us conquer the harnessing and understanding of "big data," one of the major computing challenges facing businesses and governments in the coming decades. Absorbing and impassioned, their book will inspire governments, academics, and the global tech industry to work together to power this exciting wave in innovation.

Deep Learning


Ian Goodfellow - 2016
    Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.

The Black Box Society: The Secret Algorithms That Control Money and Information


Frank Pasquale - 2014
    The data compiled and portraits created are incredibly detailed, to the point of being invasive. But who connects the dots about what firms are doing with this information? The Black Box Society argues that we all need to be able to do so--and to set limits on how big data affects our lives.Hidden algorithms can make (or ruin) reputations, decide the destiny of entrepreneurs, or even devastate an entire economy. Shrouded in secrecy and complexity, decisions at major Silicon Valley and Wall Street firms were long assumed to be neutral and technical. But leaks, whistleblowers, and legal disputes have shed new light on automated judgment. Self-serving and reckless behavior is surprisingly common, and easy to hide in code protected by legal and real secrecy. Even after billions of dollars of fines have been levied, underfunded regulators may have only scratched the surface of this troubling behavior.Frank Pasquale exposes how powerful interests abuse secrecy for profit and explains ways to rein them in. Demanding transparency is only the first step. An intelligible society would assure that key decisions of its most important firms are fair, nondiscriminatory, and open to criticism. Silicon Valley and Wall Street need to accept as much accountability as they impose on others.

The Master Algorithm: How the Quest for the Ultimate Learning Machine Will Remake Our World


Pedro Domingos - 2015
    In The Master Algorithm, Pedro Domingos lifts the veil to give us a peek inside the learning machines that power Google, Amazon, and your smartphone. He assembles a blueprint for the future universal learner--the Master Algorithm--and discusses what it will mean for business, science, and society. If data-ism is today's philosophy, this book is its bible.

Applied Artificial Intelligence: A Handbook For Business Leaders


Mariya Yao - 2018
    You've no doubt read your fair share of media hype either proclaiming doom and gloom where robots seize our jobs or prophesying a new utopia where AI cures all our human problems. But what does it actually mean for your role as a business leader? Applied Artificial Intelligence is a practical guide for business leaders who are passionate about leveraging machine intelligence to enhance the productivity of their organizations and the quality of life in their communities. If you want to drive innovation by combining data, technology, design, and people to solve real problems at an enterprise scale, this is your playbook. This book does not overload you with details on debugging TensorFlow code nor bore you with generalizations about the future of humanity. Instead, we teach you how to lead successful AI initiatives by prioritizing the right opportunities, building a diverse team of experts, conducting strategic experiments, and consciously designing your solutions to benefit both your organization and society as a whole. This book is focused on helping you drive concrete business decisions through applications of artificial intelligence and machine learning. Written with the combined knowledge of three experts in the field, Applied Artificial Intelligence is the best practical guide for business leaders looking to get true value from the adoption of machine learning technology. If you have questions such as... *What is artificial intelligence (AI)? *How do I distinguish true value from AI hype? *What are the best business use cases for AI established so far? *How do I identify the best business case for AI adoption and evaluate opportunities? *Should I build or buy an AI platform? *How do I find and recruit top AI talent for my enterprise? *How will incorporating AI into my business increase revenue or decrease costs? *How can I facilitate AI adoption within my company? ... then this handbook provides you with answers. Who is this book for? * Managers and business professionals * Marketers, product managers and business strategists * Entrepreneurs, founders and startups team members * Consultants, advisors and educators * Engineers and data scientists who want to work with business units And everyone else who is interested in using artificial intelligence and machine learning to improve business processes.

Python for Informatics: Exploring Information: Exploring Information


Charles Severance - 2002
    You can think of Python as your tool to solve problems that are far beyond the capability of a spreadsheet. It is an easy-to-use and easy-to learn programming language that is freely available on Windows, Macintosh, and Linux computers. There are free downloadable copies of this book in various electronic formats and a self-paced free online course where you can explore the course materials. All the supporting materials for the book are available under open and remixable licenses. This book is designed to teach people to program even if they have no prior experience.

Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again


Eric J. Topol - 2019
    The doctor-patient relationship--the heart of medicine--is broken: doctors are too distracted and overwhelmed to truly connect with their patients, and medical errors and misdiagnoses abound. In Deep Medicine, leading physician Eric Topol reveals how artificial intelligence can help. AI has the potential to transform everything doctors do, from notetaking and medical scans to diagnosis and treatment, greatly cutting down the cost of medicine and reducing human mortality. By freeing physicians from the tasks that interfere with human connection, AI will create space for the real healing that takes place between a doctor who can listen and a patient who needs to be heard.Innovative, provocative, and hopeful, Deep Medicine shows us how the awesome power of AI can make medicine better, for all the humans involved.

Practical Statistics for Data Scientists: 50 Essential Concepts


Peter Bruce - 2017
    Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.With this book, you'll learn:Why exploratory data analysis is a key preliminary step in data scienceHow random sampling can reduce bias and yield a higher quality dataset, even with big dataHow the principles of experimental design yield definitive answers to questionsHow to use regression to estimate outcomes and detect anomaliesKey classification techniques for predicting which categories a record belongs toStatistical machine learning methods that "learn" from dataUnsupervised learning methods for extracting meaning from unlabeled data

Natural Language Processing with Python


Steven Bird - 2009
    With it, you'll learn how to write Python programs that work with large collections of unstructured text. You'll access richly annotated datasets using a comprehensive range of linguistic data structures, and you'll understand the main algorithms for analyzing the content and structure of written communication.Packed with examples and exercises, Natural Language Processing with Python will help you: Extract information from unstructured text, either to guess the topic or identify "named entities" Analyze linguistic structure in text, including parsing and semantic analysis Access popular linguistic databases, including WordNet and treebanks Integrate techniques drawn from fields as diverse as linguistics and artificial intelligenceThis book will help you gain practical skills in natural language processing using the Python programming language and the Natural Language Toolkit (NLTK) open source library. If you're interested in developing web applications, analyzing multilingual news sources, or documenting endangered languages -- or if you're simply curious to have a programmer's perspective on how human language works -- you'll find Natural Language Processing with Python both fascinating and immensely useful.

Tools and Weapons: The Promise and the Peril of the Digital Age


Brad Smith - 2019
    This might seem uncontroversial, but it flies in the face of a tech sector long obsessed with rapid growth and sometimes on disruption as an end in itself. Now, though, we have reached an inflection point: Silicon Valley has moved fast and it has broken things. A new understanding has emerged that companies that create technology must accept greater responsibility for the future. And governments will need to regulate technology by moving faster and catching up with the pace of innovation that is impacting our communities and changing the world.In Tools and Weapons, Brad Smith takes us into the cockpit of one of the world's largest and most powerful tech companies as it finds itself in the middle of some of the thorniest emerging issues of our time. These are challenges that come with no preexisting playbook, including privacy, cybercrime and cyberwar, social media, the moral conundrums of AI, big tech's relationship to inequality and the challenges for democracy, far and near. While in no way a self-glorifying "Microsoft memoir," the book opens up the curtain remarkably wide onto some of the company's most crucial recent decision points, as it strives to protect the hopes technology offers against the very real threats it also presents. Every tool can be a weapon in the wrong person's hands, and companies are being challenged in entirely new ways to embrace the totality of their responsibilities. We have moved from a world in which Silicon Valley could take no prisoners to one in which tech companies and governments must work together to address the challenges and adapt to the changes technology has unleashed. There are huge ramifications to be thought through, and Brad Smith provides a marvelous and urgently necessary contribution to that effort.

An Introduction to Statistical Learning: With Applications in R


Gareth James - 2013
    This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

Data Jujitsu: The Art of Turning Data into Product


D.J. Patil - 2012
    Acclaimed data scientist DJ Patil details a new approach to solving problems in Data Jujitsu.Learn how to use a problem's "weight" against itself to:Break down seemingly complex data problems into simplified partsUse alternative data analysis techniques to examine themUse human input, such as Mechanical Turk, and design tricks that enlist the help of your users to take short cuts around tough problemsLearn more about the problems before starting on the solutions—and use the findings to solve them, or determine whether the problems are worth solving at all.

Hadoop Explained


Aravind Shenoy - 2014
    Hadoop allowed small and medium sized companies to store huge amounts of data on cheap commodity servers in racks. The introduction of Big Data has allowed businesses to make decisions based on quantifiable analysis. Hadoop is now implemented in major organizations such as Amazon, IBM, Cloudera, and Dell to name a few. This book introduces you to Hadoop and to concepts such as ‘MapReduce’, ‘Rack Awareness’, ‘Yarn’ and ‘HDFS Federation’, which will help you get acquainted with the technology.