Life's Greatest Secret: The Race to Crack the Genetic Code


Matthew Cobb - 2015
    Just a half century ago, this idea was revolutionary. In April 1953, James Watson and Francis Crick published in Nature their groundbreaking work revealing the double helix structure of DNA. While this discovery received wide attention from both mainstream media and the academic community, it was just one part of the bigger story in this history of molecular biology. By the mid-1950s, the scientific community confirmed that genes were indeed comprised of DNA; they just needed to crack the genetic code—and the race was on. Life’s Greatest Secret is the full and rich history of this challenge and the characters—many of whom were not biologists—whose work contributed to this grand scientific endeavor: mathematician and father of cybernetics Norbert Wiener, physicist Erwin Schrödinger, information theorist Claude Shannon, and biologists Jacques Monod and Marshall Nirenberg.In Life’s Greatest Secret, science historian and zoologist Matthew Cobb shows that the race to crack the genetic code was mostly a matter of craft—individuals or small groups struggling with ideas and concepts as much as they were with facts, trying to find the right experiment to answer the right questions, even if they didn’t know what the questions were, and finding that, even when the most definitive answer served mostly to reveal more ignorance, whether in 1953, with Watson and Crick, or in 1961, when Nirenberg and Matthaei showed how DNA codes for specific amino acids, and again and again thereafter, or in 2000, with the first publication of a human genome. Each discovery was a leap forward in our understanding of the natural world and our place within in, akin to the discoveries of Galileo and Einstein in the realm of physics, or the publication of Darwin’s On the Origin of Species. And each served to show how much bigger the problem was that anyone had previously imagined, a trend that continues, as Cobb shows, even today, whether we are discussing gene regulation, epigenetics, or GMOs.Life’s Greatest Secret is a story of ideas and of experimentation, of ingenuity, insight, and dead-ends, in the hunt to make the greatest discovery of twentieth century biology. Ultimately, though, this is a story of humans exploring what it is that makes us human.

Freaks of Nature: What Anomalies Tell Us about Development and Evolution


Mark S. Blumberg - 2008
    Born and raised in a small town, they enjoy a close relationship, though each has her own tastes and personality. But the Hensels also share a body. Their two heads sit side-by-side on a single torso, with two arms and two legs. They have not only survived, but have developed into athletic, graceful young women. And that, writes Mark S. Blumberg, opens an extraordinary window onto human development and evolution.In Freaks of Nature, Blumberg turns a scientist's eye on the oddities of nature, showing how a subject once relegated to the sideshow can help explain some of the deepest complexities of biology. Why, for example, does a two-headed human so resemble a two-headed minnow? What we need to understand, Blumberg argues, is that anomalies are the natural products of development, and it is through developmental mechanisms that evolution works. Freaks of Nature induces a kind of intellectual vertigo as it upends our intuitive understanding of biology. What really is an anomaly? Why is a limbless human a freak, but a limbless reptile-a snake-a successful variation?What we see as deformities, Blumberg writes, are merely alternative paths for development, which challenge both the creature itself and our ability to fit it into our familiar categories. Rather than mere dead-ends, many anomalies prove surprisingly survivable-as in the case of the goat without forelimbs that learned to walk upright. Blumberg explains how such variations occur, and points to the success of the Hensel sisters and the goat as examples of the extraordinary flexibility inherent in individual development.In taking seriously a subject that has often been shunned as discomfiting and embarrassing, Mark Blumberg sheds new light on how individuals-and entire species-develop, survive, and evolve.

Anatomy & Physiology


Boundless - 2013
    Boundless works with subject matter experts to select the best open educational resources available on the web, review the content for quality, and create introductory, college-level textbooks designed to meet the study needs of university students.<br><br>This textbook covers:<br><br><b>Human Anatomy and Physiology Introduction</b> -- Anatomy and Physiology Overview, Life, Homeostasis, Anatomical Terms, Clinical Cases<br><br><b>General Chemistry</b> -- Matter and Energy, Element Properties: Atomic structure, Chemical Bonds, Chemical Reactions, Inorganic Compounds, Organic Compounds<br><br><b>Cellular Structure and Function</b> -- the study of cells, Cell membranes and the fluid mosaic model, Transport across membranes, How reception works in cell signaling, Nucleus and Ribosomes, Organelles, The Cytoskeleton, External cellular components, Cell division: process and importance, The cell cycle, Transcription and translation, RNA processing, Translation to a polypeptide, Transcription, Apoptosis signals an orderly cell death<br><br><b>Tissues</b> -- Epithelial Tissue, Cell Junctions, Clinical Cases, Tissue Repair, Tissue Development, Cancer, Connective Tissue, Membranes, Nervous Tissue<br><br><b>The Integumentary System</b> -- The Skin, Accessory Structures of the Skin, Functions of the Integumentary System, Wound Healing, Integumentary System Development, Skin Disorders, Imbalances, Diseases, and Clinical Cases<br><br><b>Skeletal Tissue</b> -- Cartilage, Bone Classification, Bone Formation, Bone and Calcium, Bone Development, Bone Diseases, Disorders, Imbalances, and Clinical Cases<br><br><b>The Skeletal System</b> -- Overview of the Musculoskeletal system, Divisions of the Skeletal System, The Axial Skeleton, Skull, Hyoid Bone, Vertebral Column, Thorax, Clinical Cases of the Axial Skeleton, The Appendicular Skeleton, The Pectoral (Shoulder) Girdle, Upper Limb, The Pelvic (Hip) Girdle, Lower Limb, Skeletal System Development, Clinical Cases of the Appendicular Skeleton<br><br><b>Joints</b> -- Classification of Joints, Synovial Joints, Joint Development, Clinical Cases<br><br><b>Muscle Tissue</b> -- Overview of Muscle Tissue, Skeletal Muscle, Control of Muscle Tension, Muscle Metabolism, Exercise and Skeletal Muscle Tissue, Smooth Muscle, Clinical Cases: Muscle Disorders, Development of Muscle<br><br><b>The Muscular System</b> -- Overview of the Muscular System, Head And Neck Muscles, Trunk Muscles, Muscles of the Upper Limb, Muscles of the Lower Limb, Clinical Cases and Muscular System Disorders<br><br><b>Nervous Tissue</b> -- Overview of the Nervous System, Neuroglia, Neurons, Collections of Nervous Tissue, Neurophysiology<br><br><b>Central Nervous System (CNS)</b> -- The Brain, Consciousness, Sleep, Language, and Memory, Protection of the Brain, Parts of The Brain Stem, The Cerebellum, The Diencephalon, Cerebral Cortex (or Cerebral Hemispheres), Functional Systems of the Cerebral Cortex, Development of the CNS, Brain Disorders and Clinical Cases, The Spinal Cord, Spinal Cord Anatomy, Disorders and Clinical Cases of the Spinal Cord<br><br><b>Peripheral Nervous System (PNS)</b> -- Sensation, Sensory Receptors, Somatosensory System, Nerves, Cranial Nerves, Spinal Nerves, Distribution of Spinal Nerves, Motor Activity, Motor Pathways, Reflexes, Pain, Development of the Nervous System, Disorders of Spinal Nerves and Clinical Cases<br><br><b>Autonomic Nervous System (ANS)</b> -- Autonomic Nervous System, ANS Anatomy, Physiology of ANS,

Prachi Science Class 7


S.K. Jain Shailesh K.Jain
    These books have been prepared strictly according to the latest syllabus. The salient features of PRACHI SCIENCE are: Informal interactive-style content divided into four sections, two each for Term-I and Term-II. Text supported with a large number of colorful pictures, diagrams and illustrations for better understanding of scientific concepts. Each topic ends with "So now you know"—a pointwise summary of the topics discussed in each section. A set of "Very Short—ONE WORD" answer type questions at the end of each section to understand the concept better. Book includes a number of Activities (as recommended in the syllabus) to encourage the students to learn through real life experiences. Each chapter ends with a wide variety of questions of different types with an objective to test the comprehension of the learners. In addition to these questions, a section on Value Based Questions (VBQ) and questions on Problem Solving Assessment (PSA) is also added. A PRACTICE PAPER for chapter-based assessment with large number of suggested topics for Group Discussion, Group Activities, Seminars etc. at the end of each chapter. Term-wise Model Test Papers for a continuous assessment of the students.

Living with Our Genes: Why They Matter More Than You Think


Dean H. Hamer - 1998
    Kramer, Author of Listening to Prozac and Should You Leave?Nowhere is the nature-nuture controversy being more arduously tested than in the labs of world-renowned molecular scientist Dean Hamer, whose cutting-edge research has indisputably linked specific genes to behavioral traits, such as anxiety, thrill-seeking, and homosexuality. The culmination of that research os this provocative book, Living with Our Genes. In it, Dr. Hamer reveals that much of our behavior—how much we eat and weigh, whether we drink or use drugs, how often we have sex—is heavily influenced by genes. His findings help explain why one brother becomes a Wall Street trader, while his sibling remains content as a librarian, or why some people like to bungee-jump, while others prefer Scrabble. Dr. Hamer also sheds light on some of the most compelling and vexing aspects of personality, such as shyness, aggression, depression, and intelligence.   In the tradition of the bestselling book Listening to Prozac, Living with Our Genes is the first comprehensive investigation of the crucial link between our DNA and our behavior."Compulsive reading, reminiscent of Jared Diamond, froma scientsit who knows his stuff and communicates it well."—Kirkus Reviews"A pioneer in the field of molecular psychology, Hamer is exploring the role genes play in governing the very core of our individuality. Accessible...provocative." —Time"Absolutely terrific! I couldn't put it down."—Professor Robert Plomin, Social, Genetic & Developmental Psychiatry Research Center, Institute of Psychiatry

Mutants: On Genetic Variety and the Human Body


Armand Marie Leroi - 2003
    This elegant, humane, and engaging book "captures what we know of the development of what makes us human" (Nature).Visit Armand Marie Leroi on the web: http: //armandleroi.com/index.htmlStepping effortlessly from myth to cutting-edge science,

Master Your Mind: The More You Think, The Easier It Gets


D.E. Boyer - 2016
    D.E. Boyer takes us on a fascinating journey from the depths of despair to an amazing quantum world where anything is possible. First, we will learn how to defend ourselves against the chaos in our minds, then we will learn how to rekindle the magic in our hearts. Along the way, the wisdom of Socrates and the myth of Narcissus will transform the way we think and feel. Boyer then shows us how the military teaches their Navy Seal recruits how to handle their thoughts and feelings when someone is trying to kill them, so we can better handle our bosses, spouses, and children when it feels like they are trying to kill us. We will also get a glimpse of death through the eyes of someone who sees people die every day, giving us a much greater appreciation for life. With extremely amusing stories from her own life that touch on her dysfunctional upbringing and traumatizing career as an intensive care nurse, Boyer teaches us how to control our anxiety, boost our fragile self-esteem, and get into a state of flow so that we can spend most of our time loving life, rather than dreading it. She also gives us crucial health and nutrition tips so that we can live longer with our newfound peace and joy, and she shows us how to be more successful at life by being a better friend, spouse, and parent. With every step we take on this path, we'll find ourselves flirting with the hidden power of the mind, a power that often lies just beyond most people's reach. Only by mastering the basics of thinking and feeling can we gain access to this power. Once the door is unlocked, we will enter another dimension, a quantum world where time is irrelevant and the magic of our mind is waiting to be found.

She Has Her Mother's Laugh: The Powers, Perversions, and Potential of Heredity


Carl Zimmer - 2018
    Charles Darwin played a crucial part in turning heredity into a scientific question, and yet he failed spectacularly to answer it. The birth of genetics in the early 1900s seemed to do precisely that. Gradually, people translated their old notions about heredity into a language of genes. As the technology for studying genes became cheaper, millions of people ordered genetic tests to link themselves to missing parents, to distant ancestors, to ethnic identities. . . .But, Zimmer writes, "Each of us carries an amalgam of fragments of DNA, stitched together from some of our many ancestors. Each piece has its own ancestry, traveling a different path back through human history. A particular fragment may sometimes be cause for worry, but most of our DNA influences who we are--our appearance, our height, our penchants--in inconceivably subtle ways." Heredity isn't just about genes that pass from parent to child. Heredity continues within our own bodies, as a single cell gives rise to trillions of cells that make up our bodies. We say we inherit genes from our ancestors--using a word that once referred to kingdoms and estates--but we inherit other things that matter as much or more to our lives, from microbes to technologies we use to make life more comfortable. We need a new definition of what heredity is and, through Carl Zimmer's lucid exposition and storytelling, this resounding tour de force delivers it. Weaving historical and current scientific research, his own experience with his two daughters, and the kind of original reporting expected of one of the world's best science journalists, Zimmer ultimately unpacks urgent bioethical quandaries arising from new biomedical technologies, but also long-standing presumptions about who we really are and what we can pass on to future generations.

Why Evolution Is True


Jerry A. Coyne - 2008
    In all the current highly publicized debates about creationism and its descendant "intelligent design," there is an element of the controversy that is rarely mentioned—the "evidence," the empirical truth of evolution by natural selection. Even Richard Dawkins and Stephen Jay Gould, while extolling the beauty of evolution and examining case studies, have not focused on the evidence itself. Yet the proof is vast, varied, and magnificent, drawn from many different fields of science. Scientists are observing species splitting into two and are finding more and more fossils capturing change in the past—dinosaurs that have sprouted feathers, fish that have grown limbs. Why Evolution Is True weaves together the many threads of modern work in genetics, paleontology, geology, molecular biology, and anatomy that demonstrate the "indelible stamp" of the processes first proposed by Darwin. In crisp, lucid prose accessible to a wide audience, Why Evolution Is True dispels common misunderstandings and fears about evolution and clearly confirms that this amazing process of change has been firmly established as a scientific truth.

The Telomere Effect: A Revolutionary Approach to Living Younger, Healthier, Longer


Elizabeth Blackburn - 2017
    Elizabeth Blackburn discovered a biological indicator called telomerase, the enzyme that replenishes telomeres, which protect our genetic heritage. Dr. Blackburn and Dr. Elissa Epel's research shows that the length and health of one's telomeres are a biological underpinning of the long-hypothesized mind-body connection. They and other scientists have found that changes we can make to our daily habits can protect our telomeres and increase our health spans (the number of years we remain healthy, active, and disease-free).THE TELOMERE EFFECT reveals how Blackburn and Epel's findings, together with research from colleagues around the world, cumulatively show that sleep quality, exercise, aspects of diet, and even certain chemicals profoundly affect our telomeres, and that chronic stress, negative thoughts, strained relationships, and even the wrong neighborhoods can eat away at them. Drawing from this scientific body of knowledge, they share lists of foods and suggest amounts and types of exercise that are healthy for our telomeres, mind tricks you can use to protect yourself from stress, and information about how to protect your children against developing shorter telomeres, from pregnancy through adolescence. And they describe how we can improve our health spans at the community level, with neighborhoods characterized by trust, green spaces, and safe streets. THE TELOMERE EFFECT will make you reassess how you live your life on a day-to-day basis. It is the first book to explain how we age at a cellular level and how we can make simple changes to keep our chromosomes and cells healthy, allowing us to stay disease-free longer and live more vital and meaningful lives.

How to Clone a Mammoth: The Science of De-Extinction


Beth Shapiro - 2015
    In How to Clone a Mammoth, Beth Shapiro, evolutionary biologist and pioneer in "ancient DNA" research, walks readers through the astonishing and controversial process of de-extinction. From deciding which species should be restored, to sequencing their genomes, to anticipating how revived populations might be overseen in the wild, Shapiro vividly explores the extraordinary cutting-edge science that is being used--today--to resurrect the past. Journeying to far-flung Siberian locales in search of ice age bones and delving into her own research--as well as those of fellow experts such as Svante Paabo, George Church, and Craig Venter--Shapiro considers de-extinction's practical benefits and ethical challenges. Would de-extinction change the way we live? Is this really cloning? What are the costs and risks? And what is the ultimate goal?Using DNA collected from remains as a genetic blueprint, scientists aim to engineer extinct traits--traits that evolved by natural selection over thousands of years--into living organisms. But rather than viewing de-extinction as a way to restore one particular species, Shapiro argues that the overarching goal should be the revitalization and stabilization of contemporary ecosystems. For example, elephants with genes modified to express mammoth traits could expand into the Arctic, re-establishing lost productivity to the tundra ecosystem.Looking at the very real and compelling science behind an idea once seen as science fiction, How to Clone a Mammoth demonstrates how de-extinction will redefine conservation's future.

Human Errors: A Panorama of Our Glitches, from Pointless Bones to Broken Genes


Nathan H. Lents - 2018
    But if we are supposedly evolution’s greatest creation, why do we have such bad knees? Why do we catch head colds so often—two hundred times more often than a dog does? How come our wrists have so many useless bones? Why is the vast majority of our genetic code pointless? And are we really supposed to swallow and breathe through the same narrow tube? Surely there’s been some kind of mistake. As professor of biology Nathan H. Lents explains in Human Errors, our evolutionary history is nothing if not a litany of mistakes, each more entertaining and enlightening than the last. The human body is one big pile of compromises. But that is also a testament to our greatness: as Lents shows, humans have so many design flaws precisely because we are very, very good at getting around them.   A rollicking, deeply informative tour of humans’ four billion year long evolutionary saga, Human Errors both celebrates our imperfections and offers an unconventional accounting of the cost of our success.

The Journey of Man: A Genetic Odyssey


Spencer Wells - 2002
    Every person alive today is descended from him. How did this real-life Adam wind up as the father of us all? What happened to the descendants of other men who lived at the same time? And why, if modern humans share a single prehistoric ancestor, do we come in so many sizes, shapes, and races?Examining the hidden secrets of human evolution in our genetic code, Spencer Wells reveals how developments in the revolutionary science of population genetics have made it possible to create a family tree for the whole of humanity. Replete with marvelous anecdotes and remarkable information, from the truth about the real Adam and Eve to the way differing racial types emerged, The Journey of Man is an enthralling, epic tour through the history and development of early humankind.

Germs, Genes, & Civilization: How Epidemics Shaped Who We Are Today


David P. Clark - 2004
    No one can stop him--but he walks away. A miracle? No...dysentery. Microbes saved the Roman Empire. Nearly a millennium later, the microbes of the Black Death ended the Middle Ages, making possible the Renaissance, western democracy, and the scientific revolution. Soon after, microbes ravaged the Americas, paving the way for their European conquest. Again and again, microbes have shaped our health, our genetics, our history, our culture, our politics, even our religion and ethics. This book reveals much that scientists and cultural historians have learned about the pervasive interconnections between infectious microbes and humans. It also considers what our ongoing fundamental relationship with infectious microbes might mean for the future of the human species. The "good side" of history's worst epidemics The surprising debt we owe to killer diseases Where diseases came from... ...and where they may be going Children of pestilence: disease and civilization From Egypt to Mexico, the Romans to Attila the Hun STDs, sexual behavior, and culture How microbes may shape cultural cycles of puritanism and promiscuity

Who We Are and How We Got Here: Ancient DNA and the New Science of the Human Past


David Reich - 2018
    Now, in The New Science of the Human Past, Reich describes just how the human genome provides not only all the information that a fertilized human egg needs to develop but also contains within it the history of our species. He delineates how the Genomic Revolution and ancient DNA are transforming our understanding of our own lineage as modern humans; how genomics deconstructs the idea that there are no biologically meaningful differences among human populations (though without adherence to pernicious racist hierarchies); and how DNA studies reveal the deep history of human inequality--among different populations, between the sexes, and among individuals within a population.