Book picks similar to
Five Photons: Remarkable Journeys of Light Across Space and Time by James Geach
science
physics
nonfiction
stem
What Is Real?: The Unfinished Quest for the Meaning of Quantum Physics
Adam Becker - 2018
But ask what it means, and the result will be a brawl. For a century, most physicists have followed Niels Bohr's Copenhagen interpretation and dismissed questions about the reality underlying quantum physics as meaningless. A mishmash of solipsism and poor reasoning, Copenhagen endured, as Bohr's students vigorously protected his legacy, and the physics community favored practical experiments over philosophical arguments. As a result, questioning the status quo long meant professional ruin. And yet, from the 1920s to today, physicists like John Bell, David Bohm, and Hugh Everett persisted in seeking the true meaning of quantum mechanics. What Is Real? is the gripping story of this battle of ideas and of the courageous scientists who dared to stand up for truth.
A Short History of Nearly Everything
Bill Bryson - 2003
Taking as territory everything from the Big Bang to the rise of civilization, Bryson seeks to understand how we got from there being nothing at all to there being us. To that end, he has attached himself to a host of the world’s most advanced (and often obsessed) archaeologists, anthropologists, and mathematicians, travelling to their offices, laboratories, and field camps. He has read (or tried to read) their books, pestered them with questions, apprenticed himself to their powerful minds. A Short History of Nearly Everything is the record of this quest, and it is a sometimes profound, sometimes funny, and always supremely clear and entertaining adventure in the realms of human knowledge, as only Bill Bryson can render it. Science has never been more involving or entertaining.
Euclid's Window: The Story of Geometry from Parallel Lines to Hyperspace
Leonard Mlodinow - 2001
Here is an altogether new, refreshing, alternative history of math revealing how simple questions anyone might ask about space -- in the living room or in some other galaxy -- have been the hidden engine of the highest achievements in science and technology. Based on Mlodinow's extensive historical research; his studies alongside colleagues such as Richard Feynman and Kip Thorne; and interviews with leading physicists and mathematicians such as Murray Gell-Mann, Edward Witten, and Brian Greene, Euclid's Window is an extraordinary blend of rigorous, authoritative investigation and accessible, good-humored storytelling that makes a stunningly original argument asserting the primacy of geometry. For those who have looked through Euclid's Window, no space, no thing, and no time will ever be quite the same.
Through Two Doors at Once: The Elegant Experiment That Captures the Enigma of Our Quantum Reality
Anil Ananthaswamy - 2018
Thomas Young devised it in the early 1800s to show that light behaves like a wave, and in doing so opposed Isaac Newton. Nearly a century later, Albert Einstein showed that light comes in quanta, or particles, and the experiment became key to a fierce debate between Einstein and Niels Bohr over the nature of reality. Richard Feynman held that the double slit embodies the central mystery of the quantum world. Decade after decade, hypothesis after hypothesis, scientists have returned to this ingenious experiment to help them answer deeper and deeper questions about the fabric of the universe.How can a single particle behave both like a particle and a wave? Does a particle exist before we look at it, or does the very act of looking create reality? Are there hidden aspects to reality missing from the orthodox view of quantum physics? Is there a place where the quantum world ends and the familiar classical world of our daily lives begins, and if so, can we find it? And if there's no such place, then does the universe split into two each time a particle goes through the double slit?With his extraordinarily gifted eloquence, Anil Ananthaswamy travels around the world and through history, down to the smallest scales of physical reality we have yet fathomed. Through Two Doors at Once is the most fantastic voyage you can take.
Time Travel in Einstein's Universe: The Physical Possibilities of Travel Through Time
J. Richard Gott III - 2001
Richard Gott leads time travel out of the world of H. G. Wells and into the realm of scientific possibility. Building on theories posited by Einstein and advanced by scientists such as Stephen Hawking and Kip Thorne, Gott explains how time travel can actually occur. He describes, with boundless enthusiasm and humor, how travel to the future is not only possible but has already happened, and he contemplates whether travel to the past is also conceivable. Notable not only for its extraordinary subject matter and scientific brilliance, Time Travel in Einstein’s Universe is a delightful and captivating exploration of the surprising facts behind the science fiction of time travel.
Present at the Creation: The Story of CERN and the Large Hadron Collider
Amir D. Aczel - 2010
A project of CERN, the European Organization for Nuclear Research, its audacious purpose is to re-create, in a 16.5-mile-long circular tunnel under the French-Swiss countryside, the immensely hot and dense conditions that existed some 13.7 billion years ago within the first trillionth of a second after the fiery birth of our universe. The collider is now crashing protons at record energy levels never created by scientists before, and it will reach even higher levels by 2013. Its superconducting magnets guide two beams of protons in opposite directions around the track. After accelerating the beams to 99.9999991 percent of the speed of light, it collides the protons head-on, annihilating them in a flash of energy sufficient—in accordance with Einstein’s elegant statement of mass-energy equivalence, E=mc2—to coalesce into a shower of particles and phenomena that have not existed since the first moments of creation. Within the LHC’s detectors, scientists hope to see empirical confirmation of key theories in physics and cosmology.In telling the story of what is perhaps the most anticipated experiment in the history of science, Amir D. Aczel takes us inside the control rooms at CERN at key moments when an international team of top researchers begins to discover whether this multibillion-euro investment will fulfill its spectacular promise. Through the eyes and words of the men and women who conceived and built CERN and the LHC—and with the same clarity and depth of knowledge he demonstrated in the bestselling Fermat’s Last Theorem—Aczel enriches all of us with a firm grounding in the scientific concepts we will need to appreciate the discoveries that will almost certainly spring forth when the full power of this great machine is finally unleashed.Will the Higgs boson make its breathlessly awaited appearance, confirming at last the Standard Model of particles and their interactions that is among the great theoretical achievements of twentieth-century physics? Will the hidden dimensions posited by string theory be revealed? Will we at last identify the nature of the dark matter that makes up more than 90 percent of the cosmos? With Present at the Creation, written by one of today’s finest popular interpreters of basic science, we can all follow the progress of an experiment that promises to greatly satisfy the curiosity of anyone who ever concurred with Einstein when he said, “I want to know God’s thoughts—the rest is details.”
The End of Everything (Astrophysically Speaking)
Katie Mack - 2020
With the Big Bang, it went from a state of unimaginable density to an all-encompassing cosmic fireball to a simmering fluid of matter and energy, laying down the seeds for everything from dark matter to black holes to one rocky planet orbiting a star near the edge of a spiral galaxy that happened to develop life. But what happens at the end of the story? In billions of years, humanity could still exist in some unrecognizable form, venturing out to distant space, finding new homes and building new civilizations. But the death of the universe is final. What might such a cataclysm look like? And what does it mean for us? Dr. Katie Mack has been contemplating these questions since she was eighteen, when her astronomy professor first informed her the universe could end at any moment, setting her on the path toward theoretical astrophysics. Now, with lively wit and humor, she unpacks them in The End of Everything, taking us on a mind-bending tour through each of the cosmos’ possible finales: the Big Crunch; the Heat Death; Vacuum Decay; the Big Rip; and the Bounce. In the tradition of Neil DeGrasse’s bestseller Astrophysics for People in a Hurry, Mack guides us through major concepts in quantum mechanics, cosmology, string theory, and much more, in a wildly fun, surprisingly upbeat ride to the farthest reaches of everything we know.
Exoplanets: Diamond Worlds, Super Earths, Pulsar Planets, and the New Search for Life beyond Our Solar System
Michael Summers - 2017
Since its 2009 launch, the Kepler satellite has discovered more than two thousand exoplanets, or planets outside of our solar system. More and more exoplanets are being discovered all the time, and even more remarkable than the sheer number of exoplanets is their variety. In Exoplanets, astronomer Michael Summers and physicist James Trefil explore the unbelievable recent discoveries: planets revolving around pulsars, planets made out of diamond, planets that are mostly water, and numerous rogue planets wandering through the emptiness of space. This captivating book reveals the latest, greatest discoveries and argues that the incredible richness and complexity we are finding necessitates a change in the questions we ask and the mental paradigms we use. In short, we have to change how we think about the universe and our place in it, because it is stranger and more interesting than we can even begin to imagine.
Trespassing on Einstein's Lawn: A Father, a Daughter, the Meaning of Nothing, and the Beginning of Everything
Amanda Gefter - 2014
At a Chinese restaurant outside of Philadelphia, a father asks his fifteen-year-old daughter a deceptively simple question: "How would you define nothing?" With that, the girl who once tried to fail geometry as a conscientious objector starts reading up on general relativity and quantum mechanics, as she and her dad embark on a life-altering quest for the answers to the universe's greatest mysteries.Before Amanda Gefter became an accomplished science writer, she was a twenty-one-year-old magazine assistant willing to sneak her and her father, Warren, into a conference devoted to their physics hero, John Wheeler. Posing as journalists, Amanda and Warren met Wheeler, who offered them cryptic clues to the nature of reality: The universe is a self-excited circuit, he said. And, The boundary of a boundary is zero. Baffled, Amanda and Warren vowed to decode the phrases--and with them, the enigmas of existence. When we solve all that, they agreed, we'll write a book.Trespassing on Einstein's Lawn is that book, a memoir of the impassioned hunt that takes Amanda and her father from New York to London to Los Alamos. Along the way, they bump up against quirky science and even quirkier personalities, including Leonard Susskind, the former Bronx plumber who invented string theory; Ed Witten, the soft-spoken genius who coined the enigmatic M-theory; even Stephen Hawking.What they discover is extraordinary: the beginnings of a monumental paradigm shift in cosmology, from a single universe we all share to a splintered reality in which each observer has her own. Reality, the Gefters learn, is radically observer-dependent, far beyond anything of which Einstein or the founders of quantum mechanics ever dreamed--with shattering consequences for our understanding of the universe's origin. And somehow it all ties back to that conversation, to that Chinese restaurant, and to the true meaning of nothing.Throughout their journey, Amanda struggles to make sense of her own life--as her journalism career transforms from illusion to reality, as she searches for her voice as a writer, as she steps from a universe shared with her father to at last carve out one of her own. It's a paradigm shift you might call growing up.By turns hilarious, moving, irreverent, and profound, Trespassing on Einstein's Lawn weaves together story and science in remarkable ways. By the end, you will never look at the universe the same way again.Praise for Trespassing on Einstein's Lawn"Nothing quite prepared me for this book. Wow. Reading it, I alternated between depression--how could the rest of us science writers ever match this?--and exhilaration."--Scientific American
"To Do: Read Trespassing on Einstein's Lawn. Reality doesn't have to bite."--New York
"A zany superposition of genres . . . It's at once a coming-of-age chronicle and a father-daughter road trip to the far reaches of this universe and 10,500 others."--The Philadelphia Inquirer
The Last Man Who Knew Everything: Thomas Young, the Anonymous Polymath Who Proved Newton Wrong, Explained How We See, Cured the Sick, and Deciphered the Rosetta Stone, Among Other Feats of Genius
Andrew Robinson - 2005
Relates the life of the remarkable man who made major contributions in such fields as physics, languages, and music, describing how he proposed the light-wave theory and the three-color theory of vision, and was instrumental in the deciphering of the Rosetta Stone.
The End of Time: The Next Revolution in Our Understanding of the Universe
Julian Barbour - 1999
Although the laws of physics create a powerful impression that time is flowing, in fact there are only timeless `nows'. In The End of Time, the British theoretical physicist Julian Barbour describes the coming revolution in our understanding of the world: a quantum theory of the universe that brings together Einstein's general theory of relativity - which denies the existence of a unique time - and quantum mechanics - which demands one. Barbour believes that only the most radical of ideas can resolve the conflict between these two theories: that there is, quite literally, no time at all. The End of Time is the first full-length account of the crisis in our understanding that has enveloped quantum cosmology. Unifying thinking that has never been brought together before in a book for the general reader, Barbour reveals the true architecture of the universe and demonstrates how physics is coming up sharp against the extraordinary possibility that the sense of time passing emerges from a universe that is timeless. The heart of the book is the author's lucid description of how a world of stillness can appear to be teeming with motion: in this timeless world where all possible instants coexist, complex mathematical rules of quantum mechanics bind together a special selection of these instants in a coherent order that consciousness perceives as the flow of time. Finally, in a lucid and eloquent epilogue, the author speculates on the philosophical implications of his theory: Does free will exist? Is time travel possible? How did the universe begin? Where is heaven? Does the denial of time make life meaningless? Written with exceptional clarity and elegance, this profound and original work presents a dazzlingly powerful argument that all will be able to follow, but no-one with an interest in the workings of the universe will be able to ignore.
Sciencia: Mathematics, Physics, Chemistry, Biology, and Astronomy for All
Burkard Polster - 2011
Lavishly illustrated with engravings, woodcuts, and original drawings and diagrams, Sciencia will inspire readers of all ages to take an interest in the interconnected knowledge of the modern sciences.Beautifully produced in thirteen different colors of ink, Sciencia is an essential reference and an elegant gift.Wooden Books was founded in 1999 by designer John Martineau near Hay-on-Wye. The aim was to produce a beautiful series of recycled books based on the classical philosophies, arts and sciences. Using the Beatrix Potter formula of text facing picture pages, and old-styles fonts, along with hand-drawn illustrations and 19th century engravings, the books are designed not to date. Small but stuffed with information. Eco friendly and educational. Big ideas in a tiny space. There are over 1,000,000 Wooden Books now in print worldwide and growing.
The Outer Limits of Reason: What Science, Mathematics, and Logic Cannot Tell Us
Noson S. Yanofsky - 2013
This book investigates what cannot be known. Rather than exploring the amazing facts that science, mathematics, and reason have revealed to us, this work studies what science, mathematics, and reason tell us cannot be revealed. In The Outer Limits of Reason, Noson Yanofsky considers what cannot be predicted, described, or known, and what will never be understood. He discusses the limitations of computers, physics, logic, and our own thought processes.Yanofsky describes simple tasks that would take computers trillions of centuries to complete and other problems that computers can never solve; perfectly formed English sentences that make no sense; different levels of infinity; the bizarre world of the quantum; the relevance of relativity theory; the causes of chaos theory; math problems that cannot be solved by normal means; and statements that are true but cannot be proven. He explains the limitations of our intuitions about the world -- our ideas about space, time, and motion, and the complex relationship between the knower and the known.Moving from the concrete to the abstract, from problems of everyday language to straightforward philosophical questions to the formalities of physics and mathematics, Yanofsky demonstrates a myriad of unsolvable problems and paradoxes. Exploring the various limitations of our knowledge, he shows that many of these limitations have a similar pattern and that by investigating these patterns, we can better understand the structure and limitations of reason itself. Yanofsky even attempts to look beyond the borders of reason to see what, if anything, is out there.
Who Got Einstein's Office? Eccentricity and Genius at the Institute for Advanced Study
Ed Regis - 1987
Robert Oppenheimer rode out his political persecution in the Director's mansion. It is the Institute for Advanced Study in Princeton, New Jersey; at one time or another, home to fourteen Nobel laureates, most of the great physicists and mathematicians of the modern era, and two of the most exciting developments in twentieth-century science—cellular automata and superstrings.Who Got Einstein's Office? tells for the first time the story of this secretive institution and of its fascinating personalities.