Book picks similar to
Bioelectrical Signal Processing in Cardiac and Neurological Applications by Leif Sornmo
data-analysis
data-science
dont-have
engineering
Data Driven
D.J. Patil - 2015
It requires you to develop a data culture that involves people throughout the organization. In this O’Reilly report, DJ Patil and Hilary Mason outline the steps you need to take if your company is to be truly data-driven—including the questions you should ask and the methods you should adopt.
You’ll not only learn examples of how Google, LinkedIn, and Facebook use their data, but also how Walmart, UPS, and other organizations took advantage of this resource long before the advent of Big Data. No matter how you approach it, building a data culture is the key to success in the 21st century.
You’ll explore:
Data scientist skills—and why every company needs a Spock
How the benefits of giving company-wide access to data outweigh the costs
Why data-driven organizations use the scientific method to explore and solve data problems
Key questions to help you develop a research-specific process for tackling important issues
What to consider when assembling your data team
Developing processes to keep your data team (and company) engaged
Choosing technologies that are powerful, support teamwork, and easy to use and learn
Building Machine Learning Systems with Python
Willi Richert - 2013
Algorithms
Robert Sedgewick - 1983
This book surveys the most important computer algorithms currently in use and provides a full treatment of data structures and algorithms for sorting, searching, graph processing, and string processing -- including fifty algorithms every programmer should know. In this edition, new Java implementations are written in an accessible modular programming style, where all of the code is exposed to the reader and ready to use.The algorithms in this book represent a body of knowledge developed over the last 50 years that has become indispensable, not just for professional programmers and computer science students but for any student with interests in science, mathematics, and engineering, not to mention students who use computation in the liberal arts.The companion web site, algs4.cs.princeton.edu contains An online synopsis Full Java implementations Test data Exercises and answers Dynamic visualizations Lecture slides Programming assignments with checklists Links to related material The MOOC related to this book is accessible via the "Online Course" link at algs4.cs.princeton.edu. The course offers more than 100 video lecture segments that are integrated with the text, extensive online assessments, and the large-scale discussion forums that have proven so valuable. Offered each fall and spring, this course regularly attracts tens of thousands of registrants.Robert Sedgewick and Kevin Wayne are developing a modern approach to disseminating knowledge that fully embraces technology, enabling people all around the world to discover new ways of learning and teaching. By integrating their textbook, online content, and MOOC, all at the state of the art, they have built a unique resource that greatly expands the breadth and depth of the educational experience.
Algorithms to Live By: The Computer Science of Human Decisions
Brian Christian - 2016
What should we do, or leave undone, in a day or a lifetime? How much messiness should we accept? What balance of new activities and familiar favorites is the most fulfilling? These may seem like uniquely human quandaries, but they are not: computers, too, face the same constraints, so computer scientists have been grappling with their version of such issues for decades. And the solutions they've found have much to teach us.In a dazzlingly interdisciplinary work, acclaimed author Brian Christian and cognitive scientist Tom Griffiths show how the algorithms used by computers can also untangle very human questions. They explain how to have better hunches and when to leave things to chance, how to deal with overwhelming choices and how best to connect with others. From finding a spouse to finding a parking spot, from organizing one's inbox to understanding the workings of memory, Algorithms to Live By transforms the wisdom of computer science into strategies for human living.
Data-ism: The Revolution Transforming Decision Making, Consumer Behavior, and Almost Everything Else
Steve Lohr - 2015
Today, Data is the vital raw material of the information economy. The explosive abundance of this digital asset, more than doubling every two years, is creating a new world of opportunity and challenge.Data-ism is about this next phase, in which vast, Internet-scale data sets are used for discovery and prediction in virtually every field. It is a journey across this emerging world with people, illuminating narrative examples, and insights. It shows that, if exploited, this new revolution will change the way decisions are made—relying more on data and analysis, and less on intuition and experience—and transform the nature of leadership and management.Lohr explains how individuals and institutions will need to exploit, protect, and manage their data to stay competitive in the coming years. Filled with rich examples and anecdotes of the various ways in which the rise of Big Data is affecting everyday life it raises provocative questions about policy and practice that have wide implications for all of our lives.
Purely Functional Data Structures
Chris Okasaki - 1996
However, data structures for these languages do not always translate well to functional languages such as Standard ML, Haskell, or Scheme. This book describes data structures from the point of view of functional languages, with examples, and presents design techniques that allow programmers to develop their own functional data structures. The author includes both classical data structures, such as red-black trees and binomial queues, and a host of new data structures developed exclusively for functional languages. All source code is given in Standard ML and Haskell, and most of the programs are easily adaptable to other functional languages. This handy reference for professional programmers working with functional languages can also be used as a tutorial or for self-study.
Concrete Mathematics: A Foundation for Computer Science
Ronald L. Graham - 1988
"More concretely," the authors explain, "it is the controlled manipulation of mathematical formulas, using a collection of techniques for solving problems."
Think Stats
Allen B. Downey - 2011
This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data
Numbersense: How to Use Big Data to Your Advantage
Kaiser Fung - 2013
Virtually every choice we make hinges on how someone generates data . . . and how someone else interprets it--whether we realize it or not.Where do you send your child for the best education? Big Data. Which airline should you choose to ensure a timely arrival? Big Data. Who will you vote for in the next election? Big Data.The problem is, the more data we have, the more difficult it is to interpret it. From world leaders to average citizens, everyone is prone to making critical decisions based on poor data interpretations.In Numbersense, expert statistician Kaiser Fung explains when you should accept the conclusions of the Big Data experts--and when you should say, Wait . . . what? He delves deeply into a wide range of topics, offering the answers to important questions, such as:How does the college ranking system really work?Can an obesity measure solve America's biggest healthcare crisis?Should you trust current unemployment data issued by the government?How do you improve your fantasy sports team?Should you worry about businesses that track your data?Don't take for granted statements made in the media, by our leaders, or even by your best friend. We're on information overload today, and there's a lot of bad information out there.Numbersense gives you the insight into how Big Data interpretation works--and how it too often doesn't work. You won't come away with the skills of a professional statistician. But you will have a keen understanding of the data traps even the best statisticians can fall into, and you'll trust the mental alarm that goes off in your head when something just doesn't seem to add up.Praise for NumbersenseNumbersense correctly puts the emphasis not on the size of big data, but on the analysis of it. Lots of fun stories, plenty of lessons learned--in short, a great way to acquire your own sense of numbers!Thomas H. Davenport, coauthor of Competing on Analytics and President's Distinguished Professor of IT and Management, Babson CollegeKaiser's accessible business book will blow your mind like no other. You'll be smarter, and you won't even realize it. Buy. It. Now.Avinash Kaushik, Digital Marketing Evangelist, Google, and author, Web Analytics 2.0Each story in Numbersense goes deep into what you have to think about before you trust the numbers. Kaiser Fung ably demonstrates that it takes skill and resourcefulness to make the numbers confess their meaning.John Sall, Executive Vice President, SAS InstituteKaiser Fung breaks the bad news--a ton more data is no panacea--but then has got your back, revealing the pitfalls of analysis with stimulating stories from the front lines of business, politics, health care, government, and education. The remedy isn't an advanced degree, nor is it common sense. You need Numbersense.Eric Siegel, founder, Predictive Analytics World, and author, Predictive AnalyticsI laughed my way through this superb-useful-fun book and learned and relearned a lot. Highly recommended! Tom Peters, author of In Search of Excellence
Engineering Thermodynamics: A Computer Approach (Si Units Version) (Revised)
R.K. Rajput - 2009
Pure Substances, The First And Second Laws, Gases, Psychrometrics, The Vapor, Gas And Refrigeration Cycles, Heat Transfer, Compressible Flow, Chemical Reactions, Fuels, And More Are Presented In Detail And Enhanced With Practical Applications. This Version Presents The Material Using SI Units And Has Ample Material On SI Conversion, Steam Tables, And A Mollier Diagram. A CD-ROM, Included With The Print Version Of The Text, Includes A Fully Functional Version Of Quickfield (Widely Used In Industry), As Well As Numerous Demonstrations And Simulations With MATLAB, And Other Third Party Software.
The Cartoon Guide to Statistics
Larry Gonick - 1993
Never again will you order the Poisson Distribution in a French restaurant!This updated version features all new material.
Internal Combustion Engine Fundamentals.
John B. Heywood - 1988
An illustration program supports the concepts and theories discussed.
Feedback Control of Dynamic Systems
Gene F. Franklin - 1986
Highlights of the book include realistic problems and examples from a wide range of application areas. New to this edition are: much sharper pedagogy; an increase in the number of examples; more thorough development of the concepts; a greater range of homework problems; a greater number and variety of worked out examples; expanded coverage of dynamics modelling and Laplace transform topics; and integration of MATLAB, including many examples that are formatted in MATLAB.
Modern CTO: Everything you need to know, to be a Modern CTO.
Joel Beasley - 2018
―Jacob Boudreau CTO of Stord | Forbes 30 Under 30 Joel's book and show provide incredible insights for young startup developers and fellow CTOs alike. Joel offers a human perspective and real practical advice on the challenges and opportunities facing every Modern CTO. ― Christian Saucier | Entrepreneur and P2P Systems Architect I've really come to respect what Joel is doing in the community. His podcast and book are filling a much needed hole and I'm excited to see what else the future has in store. ― Don Pawlowski Chief Technology Officer at University Tees Modern CTO Everything you need to know to be a Modern CTO. Developers are not CTOs, but developers can learn how to be CTOs. In Modern CTO, Joel Beasley provides readers with an in-depth road map on how to successfully navigate the unexplored and jagged transition between these two roles. Drawing from personal experience, Joel gives a refreshing take on the challenges, lessons, and things to avoid on this journey.Readers will learn how Modern CTOs: Manage deadlines Speak up Know when to abandon ship and build a better one Deal with poor code Avoid getting lost in the product and know what UX mistakes to watch out for Manage people and create momentum … plus much more Modern CTO is the ultimate book when making the leap from developer to CTO. Update: Kindle Formatting issues resolved 5/13/18. Thank you for the feedback.