UX Strategy: How to Devise Innovative Digital Products That People Want


Jaime Levy - 2014
    You'll get several case studies, including Airbnb, along with interviews with UX strategists from different work environments (startup, agency, and enterprise) about their roles and experience.With this book, UX designers, product stakeholders, and startup founders will learn how to: • Conduct a competitive analysis on the online marketplace• Perform guerrilla user research for your MVP• Design for conversion and develop a funnel matrix for understanding customer acquisition• Extract innovative online opportunities from market research• Validate customer research with continuous feedback loops• Adapt traditional and contemporary business approaches (such as Lean Startup) to implement a successful strategy

Complex Adaptive Systems: An Introduction to Computational Models of Social Life


John H. Miller - 2007
    Such systems--whether political parties, stock markets, or ant colonies--present some of the most intriguing theoretical and practical challenges confronting the social sciences. Engagingly written, and balancing technical detail with intuitive explanations, Complex Adaptive Systems focuses on the key tools and ideas that have emerged in the field since the mid-1990s, as well as the techniques needed to investigate such systems. It provides a detailed introduction to concepts such as emergence, self-organized criticality, automata, networks, diversity, adaptation, and feedback. It also demonstrates how complex adaptive systems can be explored using methods ranging from mathematics to computational models of adaptive agents. John Miller and Scott Page show how to combine ideas from economics, political science, biology, physics, and computer science to illuminate topics in organization, adaptation, decentralization, and robustness. They also demonstrate how the usual extremes used in modeling can be fruitfully transcended.

Applying UML and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development


Craig Larman - 2000
    Building on two widely acclaimed previous editions, Craig Larman has updated this book to fully reflect the new UML 2 standard, to help you master the art of object design, and to promote high-impact, iterative, and skillful agile modeling practices.Developers and students will learn object-oriented analysis and design (OOA/D) through three iterations of two cohesive, start-to-finish case studies. These case studies incrementally introduce key skills, essential OO principles and patterns, UML notation, and best practices. You won’t just learn UML diagrams - you’ll learn how to apply UML in the context of OO software development.Drawing on his unsurpassed experience as a mentor and consultant, Larman helps you understand evolutionary requirements and use cases, domain object modeling, responsibility-driven design, essential OO design, layered architectures, “Gang of Four” design patterns, GRASP, iterative methods, an agile approach to the Unified Process (UP), and much more. This edition’s extensive improvements include:- A stronger focus on helping you master OOA/D through case studies that demonstrate key OO principles and patterns, while also applying the UML- New coverage of UML 2, Agile Modeling, Test-Driven Development, and refactoring- Many new tips on combining iterative and evolutionary development with OOA/D- Updates for easier study, including new learning aids and graphics- New college educator teaching resources- Guidance on applying the UP in a light, agile spirit, complementary with other iterative methods such as XP and Scrum- Techniques for applying the UML to documenting architectures- A new chapter on evolutionary requirements, and much moreApplying UML and Patterns, Third Edition, is a lucid and practical introduction to thinking and designing with objects - and creating systems that are well crafted, robust, and maintainable.

React: Up and Running


Stoyan Stefanov - 2015
    With "React: Up and Running" you'll learn how to get off the ground with React, with no prior knowledge.This book teaches you how to build components, the building blocks of your apps, as well as how to organize the components into large-scale apps. In addition, you ll learn about unit testing and optimizing performance, while focusing on the application s data (and letting the UI take care of itself)."

An Introduction to Statistical Learning: With Applications in R


Gareth James - 2013
    This book presents some of the most important modeling and prediction techniques, along with relevant applications. Topics include linear regression, classification, resampling methods, shrinkage approaches, tree- based methods, support vector machines, clustering, and more. Color graphics and real-world examples are used to illustrate the methods presented. Since the goal of this textbook is to facilitate the use of these statistical learning techniques by practitioners in science, industry, and other fields, each chapter contains a tutorial on implementing the analyses and methods presented in R, an extremely popular open source statistical software platform. Two of the authors co-wrote The Elements of Statistical Learning (Hastie, Tibshirani and Friedman, 2nd edition 2009), a popular reference book for statistics and machine learning researchers. An Introduction to Statistical Learning covers many of the same topics, but at a level accessible to a much broader audience. This book is targeted at statisticians and non-statisticians alike who wish to use cutting-edge statistical learning techniques to analyze their data. The text assumes only a previous course in linear regression and no knowledge of matrix algebra.

English Grammar in Use with Answers: Reference and Practice for Intermediate Students


Raymond Murphy - 1985
    Covering all areas of language which students at this level find difficult, this substantially revised and updated book retains the clarity, simplicity and accessibility of the first edition, adding to it new and redesigned units and appendices, modified right-hand page exercises and additional exercises. - Easy to use: 136 two-page units combine clear, accurate language presentation on left-hand pages with thorough, varied practice on facing pages. - New additional exercises offer further practice of grammar points from different groups of units. - Designed for self-study: learners choose and study problematic areas with the help of a new study guide. - Key section contains answers to all exercises and the study guide. - Appendices deal with irregular verbs, tense formation, modals, spelling, short forms and American English.

Python for Data Analysis


Wes McKinney - 2011
    It is also a practical, modern introduction to scientific computing in Python, tailored for data-intensive applications. This is a book about the parts of the Python language and libraries you'll need to effectively solve a broad set of data analysis problems. This book is not an exposition on analytical methods using Python as the implementation language.Written by Wes McKinney, the main author of the pandas library, this hands-on book is packed with practical cases studies. It's ideal for analysts new to Python and for Python programmers new to scientific computing.Use the IPython interactive shell as your primary development environmentLearn basic and advanced NumPy (Numerical Python) featuresGet started with data analysis tools in the pandas libraryUse high-performance tools to load, clean, transform, merge, and reshape dataCreate scatter plots and static or interactive visualizations with matplotlibApply the pandas groupby facility to slice, dice, and summarize datasetsMeasure data by points in time, whether it's specific instances, fixed periods, or intervalsLearn how to solve problems in web analytics, social sciences, finance, and economics, through detailed examples