Machine Learning for Dummies


John Paul Mueller - 2016
    Without machine learning, fraud detection, web search results, real-time ads on web pages, credit scoring, automation, and email spam filtering wouldn't be possible, and this is only showcasing just a few of its capabilities. Written by two data science experts, Machine Learning For Dummies offers a much-needed entry point for anyone looking to use machine learning to accomplish practical tasks.Covering the entry-level topics needed to get you familiar with the basic concepts of machine learning, this guide quickly helps you make sense of the programming languages and tools you need to turn machine learning-based tasks into a reality. Whether you're maddened by the math behind machine learning, apprehensive about AI, perplexed by preprocessing data--or anything in between--this guide makes it easier to understand and implement machine learning seamlessly.Grasp how day-to-day activities are powered by machine learning Learn to 'speak' certain languages, such as Python and R, to teach machines to perform pattern-oriented tasks and data analysis Learn to code in R using R Studio Find out how to code in Python using Anaconda Dive into this complete beginner's guide so you are armed with all you need to know about machine learning!

Machine Learning: Fundamental Algorithms for Supervised and Unsupervised Learning With Real-World Applications


Joshua Chapmann - 2017
    Right?! Machine Learning is a branch of computer science that wants to stop programming computers using a detailed list of commands to follow blindly. Instead, their aim is to implement high-level routines that teach computers how to approach new and unknown problems – these are called algorithms. In practice, they want to give computers the ability to Learn and to Adapt. We can use these algorithms to obtain insights, recognize patterns and make predictions from data, images, sounds or videos we have never seen before – or even knew existed. Unfortunately, the true power and applications of today’s Machine Learning Algorithms remain deeply misunderstood by most people. Through this book I want fix this confusion, I want to shed light on the most relevant Machine Learning Algorithms used in the industry. I will show you exactly how each algorithm works, why it works and when you should use it. Supervised Learning Algorithms K-Nearest Neighbour Naïve Bayes Regressions Unsupervised Learning Algorithms: Support Vector Machines Neural Networks Decision Trees

Data and Reality


William Kent - 1978
    

Probability Theory: The Logic of Science


E.T. Jaynes - 1999
    It discusses new results, along with applications of probability theory to a variety of problems. The book contains many exercises and is suitable for use as a textbook on graduate-level courses involving data analysis. Aimed at readers already familiar with applied mathematics at an advanced undergraduate level or higher, it is of interest to scientists concerned with inference from incomplete information.

Automate the Boring Stuff with Python: Practical Programming for Total Beginners


Al Sweigart - 2014
    But what if you could have your computer do them for you?In "Automate the Boring Stuff with Python," you'll learn how to use Python to write programs that do in minutes what would take you hours to do by hand no prior programming experience required. Once you've mastered the basics of programming, you'll create Python programs that effortlessly perform useful and impressive feats of automation to: Search for text in a file or across multiple filesCreate, update, move, and rename files and foldersSearch the Web and download online contentUpdate and format data in Excel spreadsheets of any sizeSplit, merge, watermark, and encrypt PDFsSend reminder emails and text notificationsFill out online formsStep-by-step instructions walk you through each program, and practice projects at the end of each chapter challenge you to improve those programs and use your newfound skills to automate similar tasks.Don't spend your time doing work a well-trained monkey could do. Even if you've never written a line of code, you can make your computer do the grunt work. Learn how in "Automate the Boring Stuff with Python.""

Head First JavaScript


Michael Morrison - 2007
    You want to take your web skills to the next level. And you're finally ready to add "programmer" to the resume. It sounds like you're ready to learn the Web's hottest programming language: JavaScript. Head First JavaScript is your ticket to going beyond copying and pasting the code from someone else's web site, and writing your own interactive web pages. With Head First JavaScript, you learn:The basics of programming, from variables to types to looping How the web browser runs your code, and how you can talk to the browser with your code Why you'll never have to worry about casting, overloading, or polymorphism when you're writing JavaScript code How to use the Document Object Model to change your web pages without making your users click buttons If you've ever read a Head First book, you know what to expect -- a visually rich format designed for the way your brain works. Head First JavaScript is no exception. It starts where HTML and CSS leave off, and takes you through your first program into more complex programming concepts -- like working directly with the web browser's object model and writing code that works on all modern browsers. Don't be intimidated if you've never written a line of code before! In typical Head First style, Head First JavaScript doesn't skip steps, and we're not interested in having you cut and paste code. You'll learn JavaScript, understand it, and have a blast along the way. So get ready... dynamic and exciting web pages are just pages away.

MAKE: Electronics: Learning Through Discovery


Charles Platt - 2008
    I also love the sense of humor. It's very good at disarming the fear. And it's gorgeous. I'll be recommending this book highly." --Tom Igoe, author of Physical Computing and Making Things TalkWant to learn the fundamentals of electronics in a fun, hands-on way? With Make: Electronics, you'll start working on real projects as soon as you crack open the book. Explore all of the key components and essential principles through a series of fascinating experiments. You'll build the circuits first, then learn the theory behind them!Build working devices, from simple to complex You'll start with the basics and then move on to more complicated projects. Go from switching circuits to integrated circuits, and from simple alarms to programmable microcontrollers. Step-by-step instructions and more than 500 full-color photographs and illustrations will help you use -- and understand -- electronics concepts and techniques.Discover by breaking things: experiment with components and learn from failureSet up a tricked-out project space: make a work area at home, equipped with the tools and parts you'll needLearn about key electronic components and their functions within a circuitCreate an intrusion alarm, holiday lights, wearable electronic jewelry, audio processors, a reflex tester, and a combination lockBuild an autonomous robot cart that can sense its environment and avoid obstaclesGet clear, easy-to-understand explanations of what you're doing and why

A Byte of Python


Swaroop C.H. - 2004
    An introduction to Python programming for beginners.

Practical Common LISP


Peter Seibel - 2005
    This is the first book that introduces Lisp as a language for the real world.Practical Common Lisp presents a thorough introduction to Common Lisp, providing you with an overall understanding of the language features and how they work. Over a third of the book is devoted to practical examples, such as the core of a spam filter and a web application for browsing MP3s and streaming them via the Shoutcast protocol to any standard MP3 client software (e.g., iTunes, XMMS, or WinAmp). In other "practical" chapters, author Peter Seibel demonstrates how to build a simple but flexible in-memory database, how to parse binary files, and how to build a unit test framework in 26 lines of code.

Linear Algebra and Its Applications [with CD-ROM]


David C. Lay - 1993
    

How Smart Machines Think


Sean Gerrish - 2018
    But how do all these things work? In this book, Sean Gerrish offers an engaging and accessible overview of the breakthroughs in artificial intelligence and machine learning that have made today's machines so smart.Gerrish outlines some of the key ideas that enable intelligent machines to perceive and interact with the world. He describes the software architecture that allows self-driving cars to stay on the road and to navigate crowded urban environments; the million-dollar Netflix competition for a better recommendation engine (which had an unexpected ending); and how programmers trained computers to perform certain behaviors by offering them treats, as if they were training a dog. He explains how artificial neural networks enable computers to perceive the world—and to play Atari video games better than humans. He explains Watson's famous victory on Jeopardy, and he looks at how computers play games, describing AlphaGo and Deep Blue, which beat reigning world champions at the strategy games of Go and chess. Computers have not yet mastered everything, however; Gerrish outlines the difficulties in creating intelligent agents that can successfully play video games like StarCraft that have evaded solution—at least for now.Gerrish weaves the stories behind these breakthroughs into the narrative, introducing readers to many of the researchers involved, and keeping technical details to a minimum. Science and technology buffs will find this book an essential guide to a future in which machines can outsmart people.

Bayesian Statistics the Fun Way: Understanding Statistics and Probability with Star Wars, Lego, and Rubber Ducks


Will Kurt - 2019
    But many people use data in ways they don't even understand, meaning they aren't getting the most from it. Bayesian Statistics the Fun Way will change that.This book will give you a complete understanding of Bayesian statistics through simple explanations and un-boring examples. Find out the probability of UFOs landing in your garden, how likely Han Solo is to survive a flight through an asteroid shower, how to win an argument about conspiracy theories, and whether a burglary really was a burglary, to name a few examples.By using these off-the-beaten-track examples, the author actually makes learning statistics fun. And you'll learn real skills, like how to:- How to measure your own level of uncertainty in a conclusion or belief- Calculate Bayes theorem and understand what it's useful for- Find the posterior, likelihood, and prior to check the accuracy of your conclusions- Calculate distributions to see the range of your data- Compare hypotheses and draw reliable conclusions from themNext time you find yourself with a sheaf of survey results and no idea what to do with them, turn to Bayesian Statistics the Fun Way to get the most value from your data.

Bayesian Methods for Hackers: Probabilistic Programming and Bayesian Inference


Cameron Davidson-Pilon - 2014
    However, most discussions of Bayesian inference rely on intensely complex mathematical analyses and artificial examples, making it inaccessible to anyone without a strong mathematical background. Now, though, Cameron Davidson-Pilon introduces Bayesian inference from a computational perspective, bridging theory to practice-freeing you to get results using computing power. Bayesian Methods for Hackers illuminates Bayesian inference through probabilistic programming with the powerful PyMC language and the closely related Python tools NumPy, SciPy, and Matplotlib. Using this approach, you can reach effective solutions in small increments, without extensive mathematical intervention. Davidson-Pilon begins by introducing the concepts underlying Bayesian inference, comparing it with other techniques and guiding you through building and training your first Bayesian model. Next, he introduces PyMC through a series of detailed examples and intuitive explanations that have been refined after extensive user feedback. You'll learn how to use the Markov Chain Monte Carlo algorithm, choose appropriate sample sizes and priors, work with loss functions, and apply Bayesian inference in domains ranging from finance to marketing. Once you've mastered these techniques, you'll constantly turn to this guide for the working PyMC code you need to jumpstart future projects. Coverage includes - Learning the Bayesian "state of mind" and its practical implications - Understanding how computers perform Bayesian inference - Using the PyMC Python library to program Bayesian analyses - Building and debugging models with PyMC - Testing your model's "goodness of fit" - Opening the "black box" of the Markov Chain Monte Carlo algorithm to see how and why it works - Leveraging the power of the "Law of Large Numbers" - Mastering key concepts, such as clustering, convergence, autocorrelation, and thinning - Using loss functions to measure an estimate's weaknesses based on your goals and desired outcomes - Selecting appropriate priors and understanding how their influence changes with dataset size - Overcoming the "exploration versus exploitation" dilemma: deciding when "pretty good" is good enough - Using Bayesian inference to improve A/B testing - Solving data science problems when only small amounts of data are available Cameron Davidson-Pilon has worked in many areas of applied mathematics, from the evolutionary dynamics of genes and diseases to stochastic modeling of financial prices. His contributions to the open source community include lifelines, an implementation of survival analysis in Python. Educated at the University of Waterloo and at the Independent University of Moscow, he currently works with the online commerce leader Shopify.

SQL (Visual QuickStart Guide)


Chris Fehily - 2002
    With SQL and this task-based guide to it, you can do it too—no programming experience required!After going over the relational database model and SQL syntax in the first few chapters, veteran author Chris Fehily launches into the tasks that will get you comfortable with SQL fast. In addition to explaining SQL basics, this updated reference covers the ANSI SQL:2003 standard and contains a wealth of brand-new information, including a new chapter on set operations and common tasks, well-placed optimization tips to make your queries run fast, sidebars on advanced topics, and added IBM DB2 coverage.Best of all, the book's examples were tested on the latest versions of Microsoft Access, Microsoft SQL Server, Oracle, IBM DB2, MySQL, and PostgreSQL. On the companion Web site, you can download the SQL scripts and sample database for all these systems and put your knowledge to work immediately on a real database..

Learning From Data: A Short Course


Yaser S. Abu-Mostafa - 2012
    Its techniques are widely applied in engineering, science, finance, and commerce. This book is designed for a short course on machine learning. It is a short course, not a hurried course. From over a decade of teaching this material, we have distilled what we believe to be the core topics that every student of the subject should know. We chose the title `learning from data' that faithfully describes what the subject is about, and made it a point to cover the topics in a story-like fashion. Our hope is that the reader can learn all the fundamentals of the subject by reading the book cover to cover. ---- Learning from data has distinct theoretical and practical tracks. In this book, we balance the theoretical and the practical, the mathematical and the heuristic. Our criterion for inclusion is relevance. Theory that establishes the conceptual framework for learning is included, and so are heuristics that impact the performance of real learning systems. ---- Learning from data is a very dynamic field. Some of the hot techniques and theories at times become just fads, and others gain traction and become part of the field. What we have emphasized in this book are the necessary fundamentals that give any student of learning from data a solid foundation, and enable him or her to venture out and explore further techniques and theories, or perhaps to contribute their own. ---- The authors are professors at California Institute of Technology (Caltech), Rensselaer Polytechnic Institute (RPI), and National Taiwan University (NTU), where this book is the main text for their popular courses on machine learning. The authors also consult extensively with financial and commercial companies on machine learning applications, and have led winning teams in machine learning competitions.