Advanced Rails Recipes


Mike Clark - 2007
    Fueled by significant benefits and an impressive portfolio of real-world applications already in production, Rails is destined to continue making significant inroads in coming years.Each new Rails application showing up on the web adds yet more to the collective wisdom of the Rails development community. Yesterday's best practices yield to today's latest and greatest techniques, as the state of the art is continually refined in kitchens all across the Internet. Indeed, these are times of great progress.At the same time, it's easy to get left behind in the wake of progress. Advanced Rails Recipes keeps you on the cutting edge of Rails development and, more importantly, continues to turn this fast-paced framework to your advantage.Advanced Rails Recipes is filled with pragmatic recipes you'll use on every Rails project. And by taking the code in these recipes and slipping it into your application you'll not only deliver your application quicker, you'll do so with the confidence that it's done right.The book includes contributions from Aaron Batalion, Adam Keys, Adam Wiggins, Andre Lewis, Andrew Kappen, Benjamin Curtis, Ben Smith, Chris Bernard, Chris Haupt, Chris Wanstrath, Cody Fauser, Dan Benjamin, Dan Manges, Daniel Fischer, David Bock, David Chelimsky, David Heinemeier Hansson, Erik Hatcher, Ezra Zygmuntowicz, Geoffrey Grosenbach, Giles Bowkett, Greg Hansen, Gregg Pollack, Hemant Kumar, Hugh Bien, Jamie Orchard-Hays, Jamis Buck, Jared Haworth, Jarkko Laine, Jason LaPier, Jay Fields, John Dewey, Jonathan Dahl, Josep Blanquer, Josh Stephenson, Josh Susser, Kevin Clark, Luke Francl, Mark Bates, Marty Haught, Matthew Bass, Michael Slater, Mike Clark, Mike Hagedorn, Mike Mangino, Mike Naberezny, Mike Subelsky, Nathaniel Talbott, PJ Hyett, Patrick Reagan, Peter Marklund, Pierre-Alexandre Meyer, Rick Olson, Ryan Bates, Scott Barron, Tony Primerano, Val Aleksenko, and Warren Konkel.

The Deep Learning Revolution


Terrence J. Sejnowski - 2018
    Deep learning networks can play poker better than professional poker players and defeat a world champion at Go. In this book, Terry Sejnowski explains how deep learning went from being an arcane academic field to a disruptive technology in the information economy.Sejnowski played an important role in the founding of deep learning, as one of a small group of researchers in the 1980s who challenged the prevailing logic-and-symbol based version of AI. The new version of AI Sejnowski and others developed, which became deep learning, is fueled instead by data. Deep networks learn from data in the same way that babies experience the world, starting with fresh eyes and gradually acquiring the skills needed to navigate novel environments. Learning algorithms extract information from raw data; information can be used to create knowledge; knowledge underlies understanding; understanding leads to wisdom. Someday a driverless car will know the road better than you do and drive with more skill; a deep learning network will diagnose your illness; a personal cognitive assistant will augment your puny human brain. It took nature many millions of years to evolve human intelligence; AI is on a trajectory measured in decades. Sejnowski prepares us for a deep learning future.

The Spatial Web: How Web 3.0 Will Connect Humans, Machines, and AI to Transform the World


Gabriel Rene - 2019
    Blade Runner, The Matrix, Star Wars, Avatar, Star Trek, Ready Player One and Avengers show us futuristic worlds where holograms, intelligent robots, smart devices, virtual avatars, digital transactions, and universe-scale teleportation work together perfectly, somehow seamlessly combining the virtual and the physical with the mechanical and the biological. Science fiction has done an excellent job describing a vision of the future where the digital and physical merge naturally into one — in a way that just works everywhere, for everyone. However, none of these visionary fictional works go so far as to describe exactly how this would actually be accomplished. While it has inspired many of us to ask the question—How do we enable science fantasy to become....science fact? The Spatial Web achieves this by first describing how exponentially powerful computing technologies are creating a great “Convergence.” How Augmented and Virtual Reality will enable us to overlay our information and imaginations onto the world. How Artificial Intelligence will infuse the environments and objects around us with adaptive intelligence. How the Internet of Things and Robotics will enable our vehicles, appliances, clothing, furniture, and homes to become connected and embodied with the power to see, feel, hear, smell, touch and move things in the world, and how Blockchain and Cryptocurrencies will secure our data and enable real-time transactions between the human, machine and virtual economies of the future. The book then dives deeply into the challenges and shortcomings of the World Wide Web, the rise of fake news and surveillance capitalism in Web 2.0 and the risk of algorithmic terrorism and biological hacking and “fake-reality” in Web 3.0. It raises concerns about the threat that emerging technologies pose in the hands of rogue actors whether human, algorithmic, corporate or state-sponsored and calls for common sense governance and global cooperation. It calls for business leaders, organizations and governments to not only support interoperable standards for software code, but critically, for ethical, and social codes as well. Authors Gabriel René and Dan Mapes describe in vivid detail how a new “spatial” protocol is required in order to connect the various exponential technologies of the 21st century into an integrated network capable of tracking and managing the real-time activities of our cities, monitoring and adjusting the supply chains that feed them, optimizing our farms and natural resources, automating our manufacturing and distribution, transforming marketing and commerce, accelerating our global economies, running advanced planet-scale simulations and predictions, and even bridging the gap between our interior individual reality and our exterior collective one. Enabling the ability for humans, machines and AI to communicate, collaborate and coordinate activities in the world at a global scale and how the thoughtful application of these technologies could lead to an unprecedented opportunity to create a truly global “networked” civilization or "Smart World.” The book artfully shifts between cyberpunk futurism, cautionary tale-telling, and life-affirming call-to-arms. It challenges us to consider the importance of today’s technological choices as individuals, organizations, and as a species, as we face the historic opportunity we have to transform the web, the world, and our very definition of reality.

Future Histories: What Ada Lovelace, Tom Paine, and the Paris Commune Can Teach Us About Digital Technology


Lizzie O'Shea - 2019
    In Future Histories, public interest lawyer and digital specialist Lizzie O'Shea argues that we need to stop looking forward and start looking backwards. Weaving together histories of computing and progressive social movements with modern theories of the mind, society, and self, O'Shea constructs a "usable past" that can help us determine our digital future.What, she asks, can the Paris Commune tell us about earlier experiments in sharing resources--like the Internet--in common? How can Frantz Fanon's theories of anti colonial self-determination help us build digital world in which everyone can participate equally? Can debates over equal digital access be helped by American revolutionary Tom Paine's theories of democratic, economic redistribution? What can indigenous land struggles teach us about stewarding our digital climate? And, how is Elon Musk not a future visionary but a steampunk throwback to Victorian-era technological utopians?In engaging, sparkling prose, O'Shea shows us how very human our understanding of technology is, and how when we draw on the resources of the past, we can see the potential for struggle, for liberation, for art and poetry in our technological present. Future Histories is for all of us--makers, coders, hacktivists, Facebook-users, self-styled Luddites--who find ourselves in a brave new world.

Engines of Creation: The Coming Era of Nanotechnology


K. Eric Drexler - 1986
    This brilliant work heralds the new age of nanotechnology, which will give us thorough and inexpensive control of the structure of matter.  Drexler examines the enormous implications of these developments for medicine, the economy, and the environment, and makes astounding yet well-founded projections for the future.

Where's My Jetpack?: A Guide to the Amazing Science Fiction Future That Never Arrived


Daniel H. Wilson - 2007
    Despite every World's Fair prediction, every futuristic ride at Disneyland, and the advertisements on the last page of every comic book, we are not living the future we were promised. By now, life was supposed to be a fully automated, atomic-powered, germ-free Utopia, a place where a grown man could wear a velvet spandex unitard and not be laughed at. Where are the ray guns, the flying cars, and the hoverboards that we expected? What happened to our promised moon colonies? Our servant robots? In Where's My Jetpack?, roboticist Daniel H. Wilson takes a hilarious look at the future we always imagined for ourselves. He exposes technology, spotlights existing prototypes, and reveals drawing-board plans. You will learn which technologies are already available, who made them, and where to find them. If the technology is not public, you will learn how to build, buy, or steal it. And if doesn't yet exist, you will learn what stands in the way of making it real. With thirty entries spanning everything from teleportation to self-contained skyscraper cities, and superbly illustrated by Richard Horne (101 Things to Do Before You Die), Where's My Jetpack? is an endlessly entertaining, one-of-a-kind look at the world that we always wanted. Daniel H. Wilson, Ph.D, has a degree in Robotics from Carnegie-Mellon. He is the author of How to Survive a Robot Uprising. He lives in Portland, Oregon.

Python Tricks: A Buffet of Awesome Python Features


Dan Bader - 2017
    Discover the “hidden gold” in Python’s standard library and start writing clean and Pythonic code today. Who Should Read This Book: If you’re wondering which lesser known parts in Python you should know about, you’ll get a roadmap with this book. Discover cool (yet practical!) Python tricks and blow your coworkers’ minds in your next code review. If you’ve got experience with legacy versions of Python, the book will get you up to speed with modern patterns and features introduced in Python 3 and backported to Python 2. If you’ve worked with other programming languages and you want to get up to speed with Python, you’ll pick up the idioms and practical tips you need to become a confident and effective Pythonista. If you want to make Python your own and learn how to write clean and Pythonic code, you’ll discover best practices and little-known tricks to round out your knowledge. What Python Developers Say About The Book: "I kept thinking that I wished I had access to a book like this when I started learning Python many years ago." — Mariatta Wijaya, Python Core Developer"This book makes you write better Python code!" — Bob Belderbos, Software Developer at Oracle"Far from being just a shallow collection of snippets, this book will leave the attentive reader with a deeper understanding of the inner workings of Python as well as an appreciation for its beauty." — Ben Felder, Pythonista"It's like having a seasoned tutor explaining, well, tricks!" — Daniel Meyer, Sr. Desktop Administrator at Tesla Inc.

Head First JavaScript


Michael Morrison - 2007
    You want to take your web skills to the next level. And you're finally ready to add "programmer" to the resume. It sounds like you're ready to learn the Web's hottest programming language: JavaScript. Head First JavaScript is your ticket to going beyond copying and pasting the code from someone else's web site, and writing your own interactive web pages. With Head First JavaScript, you learn:The basics of programming, from variables to types to looping How the web browser runs your code, and how you can talk to the browser with your code Why you'll never have to worry about casting, overloading, or polymorphism when you're writing JavaScript code How to use the Document Object Model to change your web pages without making your users click buttons If you've ever read a Head First book, you know what to expect -- a visually rich format designed for the way your brain works. Head First JavaScript is no exception. It starts where HTML and CSS leave off, and takes you through your first program into more complex programming concepts -- like working directly with the web browser's object model and writing code that works on all modern browsers. Don't be intimidated if you've never written a line of code before! In typical Head First style, Head First JavaScript doesn't skip steps, and we're not interested in having you cut and paste code. You'll learn JavaScript, understand it, and have a blast along the way. So get ready... dynamic and exciting web pages are just pages away.

The Hacker Crackdown: Law and Disorder on the Electronic Frontier


Bruce Sterling - 1992
    A journalist investigates the past, present, and future of computer crimes, as he attends a hacker convention, documents the extent of the computer crimes, and presents intriguing facts about hackers and their misdoings.

Big Data: Principles and best practices of scalable realtime data systems


Nathan Marz - 2012
    As scale and demand increase, so does Complexity. Fortunately, scalability and simplicity are not mutually exclusive—rather than using some trendy technology, a different approach is needed. Big data systems use many machines working in parallel to store and process data, which introduces fundamental challenges unfamiliar to most developers.Big Data shows how to build these systems using an architecture that takes advantage of clustered hardware along with new tools designed specifically to capture and analyze web-scale data. It describes a scalable, easy to understand approach to big data systems that can be built and run by a small team. Following a realistic example, this book guides readers through the theory of big data systems, how to use them in practice, and how to deploy and operate them once they're built.Purchase of the print book comes with an offer of a free PDF, ePub, and Kindle eBook from Manning. Also available is all code from the book.

Everything Is Miscellaneous: The Power of the New Digital Disorder


David Weinberger - 2007
    Everything Is Miscellaneous: The Power of the New Digital Disorder

Human + Machine: Reimagining Work in the Age of AI


Paul R. Daugherty - 2018
    Are you ready? Look around you. Artificial intelligence is no longer just a futuristic notion. It's here right now--in software that senses what we need, supply chains that "think" in real time, and robots that respond to changes in their environment. Twenty-first-century pioneer companies are already using AI to innovate and grow fast. The bottom line is this: Businesses that understand how to harness AI can surge ahead. Those that neglect it will fall behind. Which side are you on?In Human + Machine, Accenture leaders Paul R. Daugherty and H. James (Jim) Wilson show that the essence of the AI paradigm shift is the transformation of all business processes within an organization--whether related to breakthrough innovation, everyday customer service, or personal productivity habits. As humans and smart machines collaborate ever more closely, work processes become more fluid and adaptive, enabling companies to change them on the fly--or to completely reimagine them. AI is changing all the rules of how companies operate.Based on the authors' experience and research with 1,500 organizations, the book reveals how companies are using the new rules of AI to leap ahead on innovation and profitability, as well as what you can do to achieve similar results. It describes six entirely new types of hybrid human + machine roles that every company must develop, and it includes a "leader’s guide" with the five crucial principles required to become an AI-fueled business.Human + Machine provides the missing and much-needed management playbook for success in our new age of AI.

Grokking Algorithms An Illustrated Guide For Programmers and Other Curious People


Aditya Y. Bhargava - 2015
    The algorithms you'll use most often as a programmer have already been discovered, tested, and proven. If you want to take a hard pass on Knuth's brilliant but impenetrable theories and the dense multi-page proofs you'll find in most textbooks, this is the book for you. This fully-illustrated and engaging guide makes it easy for you to learn how to use algorithms effectively in your own programs.Grokking Algorithms is a disarming take on a core computer science topic. In it, you'll learn how to apply common algorithms to the practical problems you face in day-to-day life as a programmer. You'll start with problems like sorting and searching. As you build up your skills in thinking algorithmically, you'll tackle more complex concerns such as data compression or artificial intelligence. Whether you're writing business software, video games, mobile apps, or system utilities, you'll learn algorithmic techniques for solving problems that you thought were out of your grasp. For example, you'll be able to:Write a spell checker using graph algorithmsUnderstand how data compression works using Huffman codingIdentify problems that take too long to solve with naive algorithms, and attack them with algorithms that give you an approximate answer insteadEach carefully-presented example includes helpful diagrams and fully-annotated code samples in Python. By the end of this book, you will know some of the most widely applicable algorithms as well as how and when to use them.

Big data @ work : dispelling the myths, uncovering the opportunities


Thomas H. Davenport - 2014
    The author was—at first.When the term “big data” first came on the scene, bestselling author Tom Davenport (Competing on Analytics, Analytics at Work) thought it was just another example of technology hype. But his research in the years that followed changed his mind.Now, in clear, conversational language, Davenport explains what big data means—and why everyone in business needs to know about it. Big Data at Work covers all the bases: what big data means from a technical, consumer, and management perspective; what its opportunities and costs are; where it can have real business impact; and which aspects of this hot topic have been oversold.This book will help you understand:• Why big data is important to you and your organization• What technology you need to manage it• How big data could change your job, your company, and your industry• How to hire, rent, or develop the kinds of people who make big data work• The key success factors in implementing any big data project• How big data is leading to a new approach to managing analyticsWith dozens of company examples, including UPS, GE, Amazon, United Healthcare, Citigroup, and many others, this book will help you seize all opportunities—from improving decisions, products, and services to strengthening customer relationships. It will show you how to put big data to work in your own organization so that you too can harness the power of this ever-evolving new resource.

Hands-On Machine Learning with Scikit-Learn and TensorFlow


Aurélien Géron - 2017
    Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details