Book picks similar to
Decision Procedures: An Algorithmic Point of View by Daniel Kroening
computer-science
university
math-logic
technical-computer-science
Python Machine Learning
Sebastian Raschka - 2015
We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world
Data Smart: Using Data Science to Transform Information into Insight
John W. Foreman - 2013
Major retailers are predicting everything from when their customers are pregnant to when they want a new pair of Chuck Taylors. It's a brave new world where seemingly meaningless data can be transformed into valuable insight to drive smart business decisions.But how does one exactly do data science? Do you have to hire one of these priests of the dark arts, the "data scientist," to extract this gold from your data? Nope.Data science is little more than using straight-forward steps to process raw data into actionable insight. And in Data Smart, author and data scientist John Foreman will show you how that's done within the familiar environment of a spreadsheet. Why a spreadsheet? It's comfortable! You get to look at the data every step of the way, building confidence as you learn the tricks of the trade. Plus, spreadsheets are a vendor-neutral place to learn data science without the hype. But don't let the Excel sheets fool you. This is a book for those serious about learning the analytic techniques, the math and the magic, behind big data.Each chapter will cover a different technique in a spreadsheet so you can follow along: - Mathematical optimization, including non-linear programming and genetic algorithms- Clustering via k-means, spherical k-means, and graph modularity- Data mining in graphs, such as outlier detection- Supervised AI through logistic regression, ensemble models, and bag-of-words models- Forecasting, seasonal adjustments, and prediction intervals through monte carlo simulation- Moving from spreadsheets into the R programming languageYou get your hands dirty as you work alongside John through each technique. But never fear, the topics are readily applicable and the author laces humor throughout. You'll even learn what a dead squirrel has to do with optimization modeling, which you no doubt are dying to know.
How to Solve It: A New Aspect of Mathematical Method
George Pólya - 1944
Polya, How to Solve It will show anyone in any field how to think straight. In lucid and appealing prose, Polya reveals how the mathematical method of demonstrating a proof or finding an unknown can be of help in attacking any problem that can be reasoned out--from building a bridge to winning a game of anagrams. Generations of readers have relished Polya's deft--indeed, brilliant--instructions on stripping away irrelevancies and going straight to the heart of the problem.
Java: How to Program
Harvey Deitel - 1996
The Deitels' groundbreaking How to Program series offers unparalleled breadth and depth of programming concepts and intermediate-level topics for further study. The texts in the series feature hundreds of complete, working programs with thousands of lines of code--more than any other texts of their kind. Now, the world's best-selling Java textbook is again completely up-to- date with The Java 2 Platform Standard Edition (J2SE) 5.0.
Computational Complexity
Christos H. Papadimitriou - 1993
It offers a comprehensive and accessible treatment of the theory of algorithms and complexity—the elegant body of concepts and methods developed by computer scientists over the past 30 years for studying the performance and limitations of computer algorithms. The book is self-contained in that it develops all necessary mathematical prerequisites from such diverse fields such as computability, logic, number theory and probability.
Introduction to Graph Theory
Douglas B. West - 1995
Verification that algorithms work is emphasized more than their complexity. An effective use of examples, and huge number of interesting exercises, demonstrate the topics of trees and distance, matchings and factors, connectivity and paths, graph coloring, edges and cycles, and planar graphs. For those who need to learn to make coherent arguments in the fields of mathematics and computer science.
Think Stats
Allen B. Downey - 2011
This concise introduction shows you how to perform statistical analysis computationally, rather than mathematically, with programs written in Python.You'll work with a case study throughout the book to help you learn the entire data analysis process—from collecting data and generating statistics to identifying patterns and testing hypotheses. Along the way, you'll become familiar with distributions, the rules of probability, visualization, and many other tools and concepts.Develop your understanding of probability and statistics by writing and testing codeRun experiments to test statistical behavior, such as generating samples from several distributionsUse simulations to understand concepts that are hard to grasp mathematicallyLearn topics not usually covered in an introductory course, such as Bayesian estimationImport data from almost any source using Python, rather than be limited to data that has been cleaned and formatted for statistics toolsUse statistical inference to answer questions about real-world data
Java Se8 for the Really Impatient: A Short Course on the Basics
Cay S. Horstmann - 2013
The addition of lambda expressions (closures) and streams represents the biggest change to Java programming since the introduction of generics and annotations. Now, with Java SE 8 for the Really Impatient , internationally renowned Java author Cay S. Horstmann concisely introduces Java 8's most valuable new features (plus a few Java 7 innovations that haven't gotten the attention they deserve). If you're an experienced Java programmer, Horstmann's practical insights and sample code will help you quickly take advantage of these and other Java language and platform improvements. This indispensable guide includes Coverage of using lambda expressions (closures) to write computation "snippets" that can be passed to utility functions The brand-new streams API that makes Java collections far more flexible and efficient Major updates to concurrent programming that make use of lambda expressions (filter/map/reduce) and that provide dramatic performance improvements for shared counters and hash tables A full chapter with advice on how you can put lambda expressions to work in your own programs Coverage of the long-awaited introduction of a well-designed date/time/calendar library (JSR 310) A concise introduction to JavaFX, which is positioned to replace Swing GUIs, and to the Nashorn Javascript engine A thorough discussion of many small library changes that make Java programming more productive and enjoyable This is the first title to cover all of these highly anticipated improvements and is invaluable for anyone who wants to write tomorrow's most robust, efficient, and secure Java code.
Linux Bible
Christopher Negus - 2005
Whether you're new to Linux or need a reliable update and reference, this is an excellent resource. Veteran bestselling author Christopher Negus provides a complete tutorial packed with major updates, revisions, and hands-on exercises so that you can confidently start using Linux today. Offers a complete restructure, complete with exercises, to make the book a better learning tool Places a strong focus on the Linux command line tools and can be used with all distributions and versions of Linux Features in-depth coverage of the tools that a power user and a Linux administrator need to get startedThis practical learning tool is ideal for anyone eager to set up a new Linux desktop system at home or curious to learn how to manage Linux server systems at work.
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
Trevor Hastie - 2001
With it has come vast amounts of data in a variety of fields such as medicine, biology, finance, and marketing. The challenge of understanding these data has led to the development of new tools in the field of statistics, and spawned new areas such as data mining, machine learning, and bioinformatics. Many of these tools have common underpinnings but are often expressed with different terminology. This book describes the important ideas in these areas in a common conceptual framework. While the approach is statistical, the emphasis is on concepts rather than mathematics. Many examples are given, with a liberal use of color graphics. It should be a valuable resource for statisticians and anyone interested in data mining in science or industry. The book's coverage is broad, from supervised learning (prediction) to unsupervised learning. The many topics include neural networks, support vector machines, classification trees and boosting—the first comprehensive treatment of this topic in any book. Trevor Hastie, Robert Tibshirani, and Jerome Friedman are professors of statistics at Stanford University. They are prominent researchers in this area: Hastie and Tibshirani developed generalized additive models and wrote a popular book of that title. Hastie wrote much of the statistical modeling software in S-PLUS and invented principal curves and surfaces. Tibshirani proposed the Lasso and is co-author of the very successful An Introduction to the Bootstrap. Friedman is the co-inventor of many data-mining tools including CART, MARS, and projection pursuit.
Programming Groovy
Venkat Subramaniam - 2008
But recently, the industry has turned to dynamic languages for increased productivity and speed to market.Groovy is one of a new breed of dynamic languages that run on the Java platform. You can use these new languages on the JVM and intermix them with your existing Java code. You can leverage your Java investments while benefiting from advanced features including true Closures, Meta Programming, the ability to create internal DSLs, and a higher level of abstraction.If you're an experienced Java developer, Programming Groovy will help you learn the necessary fundamentals of programming in Groovy. You'll see how to use Groovy to do advanced programming including using Meta Programming, Builders, Unit Testing with Mock objects, processing XML, working with Databases and creating your own Domain-Specific Languages (DSLs).
Deep Learning
Ian Goodfellow - 2016
Because the computer gathers knowledge from experience, there is no need for a human computer operator to formally specify all the knowledge that the computer needs. The hierarchy of concepts allows the computer to learn complicated concepts by building them out of simpler ones; a graph of these hierarchies would be many layers deep. This book introduces a broad range of topics in deep learning.The text offers mathematical and conceptual background, covering relevant concepts in linear algebra, probability theory and information theory, numerical computation, and machine learning. It describes deep learning techniques used by practitioners in industry, including deep feedforward networks, regularization, optimization algorithms, convolutional networks, sequence modeling, and practical methodology; and it surveys such applications as natural language processing, speech recognition, computer vision, online recommendation systems, bioinformatics, and videogames. Finally, the book offers research perspectives, covering such theoretical topics as linear factor models, autoencoders, representation learning, structured probabilistic models, Monte Carlo methods, the partition function, approximate inference, and deep generative models.Deep Learning can be used by undergraduate or graduate students planning careers in either industry or research, and by software engineers who want to begin using deep learning in their products or platforms. A website offers supplementary material for both readers and instructors.
The Art of Doing Science and Engineering: Learning to Learn
Richard Hamming - 1996
By presenting actual experiences and analyzing them as they are described, the author conveys the developmental thought processes employed and shows a style of thinking that leads to successful results is something that can be learned. Along with spectacular successes, the author also conveys how failures contributed to shaping the thought processes. Provides the reader with a style of thinking that will enhance a person's ability to function as a problem-solver of complex technical issues. Consists of a collection of stories about the author's participation in significant discoveries, relating how those discoveries came about and, most importantly, provides analysis about the thought processes and reasoning that took place as the author and his associates progressed through engineering problems.
Beginning HTML, XHTML, CSS, and JavaScript
Jon Duckett - 2009
While learning these technologies, you will discover coding practices such as writing code that works on multiple browsers including mobile devices, how to use AJAX frameworks to add interactivity to your pages, and how to ensure your pages meet accessible requirements.Packed with real-world examples, the book not only teaches you how to write Web sites using XHTML, CSS and JavaScript, but it also teaches you design principles that help you create attractive web sites and practical advice on how to make web pages more usable. In addition, special checklists and appendices review key topics and provide helpful references that re-enforce the basics you've learned.Serves as an ideal beginners guide to writing web pages using XHTML Explains how to use CSS to make pages more appealing and add interactivity to pages using JavaScript and AJAX frameworks Share advice on design principles and how to make pages more attractive and offers practical help with usability and accessibility Features checklists and appendices that review key topics This introductory guide is essential reading for getting started with using XHTML, CSS and JavaScript to create exciting and compelling Web sites.Note: CD-ROM/DVD and other supplementary materials are not included as part of eBook file.
Two Scoops of Django: Best Practices for Django 1.5
Daniel Roy Greenfeld - 2013
We'll introduce you to various tips, tricks, patterns, code snippets, and techniques that we've picked up over the years.This book is great for:Beginners who have just finished the Django tutorial.Developers with intermediate knowledge of Django who want to improve their Django projects.