Working at the Ubuntu Command-Line Prompt


Keir Thomas - 2011
    His books have been read by over 1,000,000 people and are #1 best-sellers. His book Beginning Ubuntu Linux recently entered its sixth edition, and picked-up a Linux Journal award along the way. Thomas is also the author of Ubuntu Kung Fu. * * * * * * * * * * * * * * * * * Get to grips with the Ubuntu command-line with this #1 best-selling and concise guide. "Best buck I've spent yet" — Amazon review.* Readable, accessible and easy to understand;* Learn essential Ubuntu vocational skills, or read just for fun;* Covers Ubuntu commands, syntax, the filesystem, plus advanced techniques;* For ANY version of Linux based on Debian, such as Linux Mint--not just Ubuntu!;* Includes BONUS introduction to Ubuntu chapter, plus a glossary appendix and a guide to reading Linux/Unix documentation.

Naked Statistics: Stripping the Dread from the Data


Charles Wheelan - 2012
    How can we catch schools that cheat on standardized tests? How does Netflix know which movies you’ll like? What is causing the rising incidence of autism? As best-selling author Charles Wheelan shows us in Naked Statistics, the right data and a few well-chosen statistical tools can help us answer these questions and more.For those who slept through Stats 101, this book is a lifesaver. Wheelan strips away the arcane and technical details and focuses on the underlying intuition that drives statistical analysis. He clarifies key concepts such as inference, correlation, and regression analysis, reveals how biased or careless parties can manipulate or misrepresent data, and shows us how brilliant and creative researchers are exploiting the valuable data from natural experiments to tackle thorny questions.And in Wheelan’s trademark style, there’s not a dull page in sight. You’ll encounter clever Schlitz Beer marketers leveraging basic probability, an International Sausage Festival illuminating the tenets of the central limit theorem, and a head-scratching choice from the famous game show Let’s Make a Deal—and you’ll come away with insights each time. With the wit, accessibility, and sheer fun that turned Naked Economics into a bestseller, Wheelan defies the odds yet again by bringing another essential, formerly unglamorous discipline to life.

Scala for the Impatient


Cay S. Horstmann - 2012
    Using Scala, you can write programs more concisely than in Java, as well as leverage the full power of concurrency. Since Scala runs on the JVM, it can access any Java library and is interoperable with Java frameworks. Scala for the Impatient concisely shows developers what Scala can do and how to do it. In this book, Cay Horstmann, the principal author of the international best-selling Core Java(TM), offers a rapid, code-based introduction that's completely practical. Horstmann introduces Scala concepts and techniques in "blog-sized" chunks that you can quickly master and apply. Hands-on activities guide you through well-defined stages of competency, from basic to expert. Coverage includes Getting started quickly with Scala's interpreter, syntax, tools, and unique idioms Mastering core language features: functions, arrays, maps, tuples, packages, imports, exception handling, and more Becoming familiar with object-oriented programming in Scala: classes, inheritance, and traits Using Scala for real-world programming tasks: working with files, regular expressions, and XML Working with higher-order functions and the powerful Scala collections library Leveraging Scala's powerful pattern matching and case classes Creating concurrent programs with Scala actors Implementing domain-specific languages Understanding the Scala type system Applying advanced "power tools" such as annotations, implicits, and delimited continuations Scala is rapidly reaching a tipping point that will reshape the experience of programming. This book will help object-oriented programmers build on their existing skills, allowing them to immediately construct useful applications as they gradually master advanced programming techniques.

Prediction Machines: The Simple Economics of Artificial Intelligence


Ajay Agrawal - 2018
    But facing the sea change that AI will bring can be paralyzing. How should companies set strategies, governments design policies, and people plan their lives for a world so different from what we know? In the face of such uncertainty, many analysts either cower in fear or predict an impossibly sunny future.But in Prediction Machines, three eminent economists recast the rise of AI as a drop in the cost of prediction. With this single, masterful stroke, they lift the curtain on the AI-is-magic hype and show how basic tools from economics provide clarity about the AI revolution and a basis for action by CEOs, managers, policy makers, investors, and entrepreneurs.When AI is framed as cheap prediction, its extraordinary potential becomes clear: Prediction is at the heart of making decisions under uncertainty. Our businesses and personal lives are riddled with such decisions. Prediction tools increase productivity--operating machines, handling documents, communicating with customers. Uncertainty constrains strategy. Better prediction creates opportunities for new business structures and strategies to compete. Penetrating, fun, and always insightful and practical, Prediction Machines follows its inescapable logic to explain how to navigate the changes on the horizon. The impact of AI will be profound, but the economic framework for understanding it is surprisingly simple.

Deep Learning for Coders with Fastai and Pytorch: AI Applications Without a PhD


Jeremy Howard - 2020
    But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications.Authors Jeremy Howard and Sylvain Gugger show you how to train a model on a wide range of tasks using fastai and PyTorch. You'll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes.Train models in computer vision, natural language processing, tabular data, and collaborative filteringLearn the latest deep learning techniques that matter most in practiceImprove accuracy, speed, and reliability by understanding how deep learning models workDiscover how to turn your models into web applicationsImplement deep learning algorithms from scratchConsider the ethical implications of your work

Literate Programming


Donald Ervin Knuth - 1992
    Many examples are given, including excerpts from the programs for TeX and METAFONT. The final essay is an example of CWEB, a system for literate programming in C and related languages.This volume is first in a series of Knuth's collected works.

Programming Collective Intelligence: Building Smart Web 2.0 Applications


Toby Segaran - 2002
    With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you've found it.Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general -- all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains:Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features -- crawlers, indexers, query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent features in a dataset Evolving intelligence for problem solving -- how a computer develops its skill by improving its own code the more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. "Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details."-- Dan Russell, Google "Toby's book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths."-- Tim Wolters, CTO, Collective Intellect

Learning OpenCV: Computer Vision with the OpenCV Library


Gary Bradski - 2008
    Freeman, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of TechnologyLearning OpenCV puts you in the middle of the rapidly expanding field of computer vision. Written by the creators of the free open source OpenCV library, this book introduces you to computer vision and demonstrates how you can quickly build applications that enable computers to "see" and make decisions based on that data. Computer vision is everywhere-in security systems, manufacturing inspection systems, medical image analysis, Unmanned Aerial Vehicles, and more. It stitches Google maps and Google Earth together, checks the pixels on LCD screens, and makes sure the stitches in your shirt are sewn properly. OpenCV provides an easy-to-use computer vision framework and a comprehensive library with more than 500 functions that can run vision code in real time.Learning OpenCV will teach any developer or hobbyist to use the framework quickly with the help of hands-on exercises in each chapter. This book includes:A thorough introduction to OpenCV Getting input from cameras Transforming images Segmenting images and shape matching Pattern recognition, including face detection Tracking and motion in 2 and 3 dimensions 3D reconstruction from stereo vision Machine learning algorithms Getting machines to see is a challenging but entertaining goal. Whether you want to build simple or sophisticated vision applications, Learning OpenCV is the book you need to get started.

iOS Programming: The Big Nerd Ranch Guide (Big Nerd Ranch Guides)


Christian Keur - 2015
    After completing this book, you will have the know-how and the confidence you need to tackle iOS projects of your own. Based on Big Nerd Ranch's popular iOS Bootcamp course and its well-tested materials and methodology, this bestselling guide teaches iOS concepts and coding in tandem. The result is instruction that is relevant and useful.Throughout the book, the authors explain what's important and share their insights into the larger context of the iOS platform. You get a real understanding of how iOS development works, the many features that are available, and when and where to apply what you've learned.

Hands-On Machine Learning with Scikit-Learn and TensorFlow


Aurélien Géron - 2017
    Now that machine learning is thriving, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how.By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn how to use a range of techniques, starting with simple Linear Regression and progressing to Deep Neural Networks. If you have some programming experience and you’re ready to code a machine learning project, this guide is for you.This hands-on book shows you how to use:Scikit-Learn, an accessible framework that implements many algorithms efficiently and serves as a great machine learning entry pointTensorFlow, a more complex library for distributed numerical computation, ideal for training and running very large neural networksPractical code examples that you can apply without learning excessive machine learning theory or algorithm details

Introducing Artificial Intelligence: A Graphic Guide


Henry Brighton - 2007
    But can machines really think? Is the mind just a complicated computer program? Introducing Artificial Intelligence focuses on the issues behind one of science's most difficult problems.

Python Machine Learning


Sebastian Raschka - 2015
    We are living in an age where data comes in abundance, and thanks to the self-learning algorithms from the field of machine learning, we can turn this data into knowledge. Automated speech recognition on our smart phones, web search engines, e-mail spam filters, the recommendation systems of our favorite movie streaming services – machine learning makes it all possible.Thanks to the many powerful open-source libraries that have been developed in recent years, machine learning is now right at our fingertips. Python provides the perfect environment to build machine learning systems productively.This book will teach you the fundamentals of machine learning and how to utilize these in real-world applications using Python. Step-by-step, you will expand your skill set with the best practices for transforming raw data into useful information, developing learning algorithms efficiently, and evaluating results.You will discover the different problem categories that machine learning can solve and explore how to classify objects, predict continuous outcomes with regression analysis, and find hidden structures in data via clustering. You will build your own machine learning system for sentiment analysis and finally, learn how to embed your model into a web app to share with the world

Nine Algorithms That Changed the Future: The Ingenious Ideas That Drive Today's Computers


John MacCormick - 2012
    A simple web search picks out a handful of relevant needles from the world's biggest haystack: the billions of pages on the World Wide Web. Uploading a photo to Facebook transmits millions of pieces of information over numerous error-prone network links, yet somehow a perfect copy of the photo arrives intact. Without even knowing it, we use public-key cryptography to transmit secret information like credit card numbers; and we use digital signatures to verify the identity of the websites we visit. How do our computers perform these tasks with such ease? This is the first book to answer that question in language anyone can understand, revealing the extraordinary ideas that power our PCs, laptops, and smartphones. Using vivid examples, John MacCormick explains the fundamental "tricks" behind nine types of computer algorithms, including artificial intelligence (where we learn about the "nearest neighbor trick" and "twenty questions trick"), Google's famous PageRank algorithm (which uses the "random surfer trick"), data compression, error correction, and much more. These revolutionary algorithms have changed our world: this book unlocks their secrets, and lays bare the incredible ideas that our computers use every day.

Lifehacked: How One Family from the Slums Made Millions Selling Apps


Allen Wong - 2012
    He became a self-made millionaire before he was 25.But, life wasn't always this grand for him. He was the only person in his family earning an income. And, he came from an oppressed family that grew up in the slums. Regardless, the apps he published were downloaded by over 15 million people.His apps have been featured in many places, including Wired.com, NBC News, and CNN. Now he's sharing the story on how he did it, the crises he struggled with, and what his father taught him to be successful.App companies have paid him thousands of dollars for consultant work, and he has helped them increase their download numbers by over 1000%. One of those apps was downloaded by over 100,000 users in one day. And now he is revealing his marketing secrets for the first time in this book.Note: This book was written with non-technical people in mind. The book covers both life and entrepreneurial lessons, and not all of the book is about app development.

Think Python


Allen B. Downey - 2002
    It covers the basics of computer programming, including variables and values, functions, conditionals and control flow, program development and debugging. Later chapters cover basic algorithms and data structures.